Scientometric Analysis of Biofilm Research in Microbial Fuel Cells: Insights into Key Research Areas and Emerging Trends

Marcelinus Christwardana, Sri Widodo Agung Suedy, Udi Harmoko

Abstract


A scientometric investigation mapped the literature on biofilm development in Microbial Fuel Cells (MFCs), revealing promising renewable energy prospects and waste treatment solutions. The analysis encompassed 16898 sources, predominantly research articles (12571), along with review papers, conference papers, books, and other publications. Network analysis highlighted key research clusters and subtopics, including biofilm characterization, electrode optimization, and monitoring/control technologies. Insights from biofilm research have led to innovative approaches like biofilm engineering and advanced analytical techniques, enhancing real-world applications. Integration of MFCs into sustainable development underscores biofilms' potential as eco-friendly and economically viable components of energy production systems.

Keywords


bioenergy; co-authorships; collaboration; co-occurrences; research trends

Full Text:

PDF

References


Abrevaya, X. C., Sacco, N. J., Bonetto, M. C., Hilding-Ohlsson, A., & Cortón, E. (2015). Analytical applications of microbial fuel cells. Part I: Biochemical oxygen demand. Biosensors and Bioelectronics, 63, 580-590.

Angelaalincy, M. J., Navanietha Krishnaraj, R., Shakambari, G., Ashokkumar, B., Kathiresan, S., & Varalakshmi, P. (2018). Biofilm engineering approaches for improving the performance of microbial fuel cells and bioelectrochemical systems. Frontiers in Energy Research, 6, 63.

Barbosa, S. G., Peixoto, L., Ter Heijne, A., Kuntke, P., Alves, M. M., & Pereira, M. A. (2017). Investigating bacterial community changes and organic substrate degradation in microbial fuel cells operating on real human urine. Environmental Science: Water Research & Technology, 3(5), 897-904.

Boas, J. V., Oliveira, V. B., Simões, M., & Pinto, A. M. (2022). Review on microbial fuel cells applications, developments and costs. Journal of Environmental Management, 307, 114525.

Bose, D., Dey, A., & Banerjee, T. (2020). Aspects of bioeconomy and microbial fuel cell technologies for sustainable development. Sustainability: The Journal of Record, 13(3), 107-118.

Brunschweiger, S., Ojong, E. T., Weisser, J., Schwaferts, C., Elsner, M., Ivleva, N. P., ... & Glas, K. (2020). The effect of clogging on the long-term stability of different carbon fiber brushes in microbial fuel cells for brewery wastewater treatment. Bioresource Technology Reports, 11, 100420.

Chen, X., Li, Y., Yuan, X., Li, N., He, W., & Liu, J. (2020). Synergistic effect between poly (diallyldimethylammonium chloride) and reduced graphene oxide for high electrochemically active biofilm in microbial fuel cell. Electrochimica acta, 359, 136949.

Chen, X., Zhang, Y., Xu, S., & Dong, F. (2023). Bibliometric analysis for research trends and hotspots in heat and mass transfer and its management of proton exchange membrane fuel cells. Applied Energy, 333, 120611.

Christwardana, M., & Khaerudini, D. S. (2022). The Scientometric Evaluation of The Research on Yeast Microbial Fuel Cells as A Promising Sustainable Energy Source. Analytical and Bioanalytical Electrochemistry, 14(8), 768-788.

Christwardana, M., Hadiyanto, H., Motto, S. A., Sudarno, S., & Haryani, K. (2020). Performance evaluation of yeast-assisted microalgal microbial fuel cells on bioremediation of cafeteria wastewater for electricity generation and microalgae biomass production. Biomass and Bioenergy, 139, 105617..

Douville, N. J., Zamankhan, P., Tung, Y. C., Li, R., Vaughan, B. L., Tai, C. F., ... & Takayama, S. (2011). Combination of fluid and solid mechanical stresses contribute to cell death and detachment in a microfluidic alveolar model. Lab on a Chip, 11(4), 609-619.

Elmaadawy, K., Hu, J., Guo, S., Hou, H., Xu, J., Wang, D., ... & Liu, B. (2020). Enhanced treatment of landfill leachate with cathodic algal biofilm and oxygen-consuming unit in a hybrid microbial fuel cell system. Bioresource technology, 310, 123420.

Faria, A., Gonçalves, L., Peixoto, J. M., Peixoto, L., Brito, A. G., & Martins, G. (2017). Resources recovery in the dairy industry: bioelectricity production using a continuous microbial fuel cell. Journal of cleaner production, 140, 971-976.

Franks, A. E., Malvankar, N., & Nevin, K. P. (2010). Bacterial biofilms: the powerhouse of a microbial fuel cell. Biofuels, 1(4), 589-604.

Ge, Z., Wu, L., Zhang, F., & He, Z. (2015). Energy extraction from a large-scale microbial fuel cell system treating municipal wastewater. Journal of Power Sources, 297, 260-264.

Godain, A., Haddour, N., Fongarland, P., & Vogel, T. M. (2022). Bacterial competition for the anode colonization under different external resistances in microbial fuel cells. Catalysts, 12(2), 176.

Gonzalez-Nava, C., Manríquez, J., Godínez, L. A., & Rodríguez-Valadez, F. J. (2022). Enhancement of the electron transfer and ion transport phenomena in microbial fuel cells containing humic acid-modified bioanodes. Bioelectrochemistry, 144, 108003.

Goswami, R., & Mishra, V. K. (2018). A review of design, operational conditions and applications of microbial fuel cells. Biofuels, 9(2), 203-220.

Greenman, J., Gajda, I., You, J., Mendis, B. A., Obata, O., Pasternak, G., & Ieropoulos, I. (2021). Microbial fuel cells and their electrified biofilms. Biofilm, 3, 100057.

Gude, V. G. (2016). Wastewater treatment in microbial fuel cells–an overview. Journal of Cleaner Production, 122, 287-307.

Gul, H., Raza, W., Lee, J., Azam, M., Ashraf, M., & Kim, K. H. (2021). Progress in microbial fuel cell technology for wastewater treatment and energy harvesting. Chemosphere, 281, 130828.

Guo, X., Wang, Q., Xu, T., Wei, K., Yin, M., Liang, P., ... & Zhang, X. (2020). One-step ball milling-prepared nano Fe 2 O 3 and nitrogen-doped graphene with high oxygen reduction activity and its application in microbial fuel cells. Frontiers of Environmental Science & Engineering, 14, 1-11.

He, L., Du, P., Chen, Y., Lu, H., Cheng, X., Chang, B., & Wang, Z. (2017). Advances in microbial fuel cells for wastewater treatment. Renewable and Sustainable Energy Reviews, 71, 388-403.

He, Z., & Mansfeld, F. (2009). Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies. Energy & Environmental Science, 2(2), 215-219.

Hindatu, Y., Annuar, M. S. M., & Gumel, A. M. (2017). Mini-review: Anode modification for improved performance of microbial fuel cell. Renewable and Sustainable Energy Reviews, 73, 236-248.

Jiménez Otero, F., Chadwick, G. L., Yates, M. D., Mickol, R. L., Saunders, S. H., Glaven, S. M., ... & Bond, D. R. (2021). Evidence of a streamlined extracellular electron transfer pathway from biofilm structure, metabolic stratification, and long-range electron transfer parameters. Applied and environmental microbiology, 87(17), e00706-21.

Kamel, M. S., Abd-Alla, M. H., & Abdul-Raouf, U. M. (2020). Characterization of anodic biofilm bacterial communities and performance evaluation of a mediator-free microbial fuel cell. Environmental Engineering Research, 25(6), 862-870.

Kato Marcus, A., Torres, C. I., & Rittmann, B. E. (2007). Conduction‐based modeling of the biofilm anode of a microbial fuel cell. Biotechnology and bioengineering, 98(6), 1171-1182.

Khandaker, S., Das, S., Hossain, M. T., Islam, A., Miah, M. R., & Awual, M. R. (2021). Sustainable approach for wastewater treatment using microbial fuel cells and green energy generation–A comprehensive review. Journal of molecular liquids, 344, 117795.

Kim, B., Lee, B. G., Kim, B. H., & Chang, I. S. (2015). Assistance current effect for prevention of voltage reversal in stacked microbial fuel cell systems. ChemElectroChem, 2(5), 755-760.

Kižys, K., Zinovičius, A., Jakštys, B., Bružaitė, I., Balčiūnas, E., Petrulevičienė, M., ... & Morkvėnaitė-Vilkončienė, I. (2023). Microbial biofuel cells: Fundamental principles, development and recent obstacles. Biosensors, 13(2), 221.

Konur, O. (2017). The top citation classics in alginates for biomedicine. In Seaweed Polysaccharides (pp. 223-249). Elsevier.

Kumar, R., Singh, L., & Zularisam, A. W. (2016). Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renewable and Sustainable Energy Reviews, 56, 1322-1336.

Kumar, S. S., Kumar, V., Kumar, R., Malyan, S. K., & Pugazhendhi, A. (2019). Microbial fuel cells as a sustainable platform technology for bioenergy, biosensing, environmental monitoring, and other low power device applications. Fuel, 255, 115682.

Ledezma, P., Greenman, J., & Ieropoulos, I. (2012). Maximising electricity production by controlling the biofilm specific growth rate in microbial fuel cells. Bioresource technology, 118, 615-618.

Leininger, A., Yates, M. D., Ramirez, M., & Kjellerup, B. (2021). Biofilm structure, dynamics, and ecology of an upscaled biocathode wastewater microbial fuel cell. Biotechnology and Bioengineering, 118(3), 1305-1316.

Leung, D. H. L., Lim, Y. S., Uma, K., Pan, G. T., Lin, J. H., Chong, S., & Yang, T. C. K. (2021). Engineering S. oneidensis for performance improvement of microbial fuel cell—a mini review. Applied biochemistry and biotechnology, 193, 1170-1186.

Li, C., Yi, K., Hu, S., & Yang, W. (2023). Cathodic biofouling control by microbial separators in air-breathing microbial fuel cells. Environmental Science and Ecotechnology, 15, 100251.

Li, Y., Liu, J., Chen, X., Yuan, X., Li, N., He, W., & Feng, Y. (2021). Tailoring spatial structure of electroactive biofilm for enhanced activity and direct electron transfer on iron phthalocyanine modified anode in microbial fuel cells. Biosensors and Bioelectronics, 191, 113410.

Liu, F., Sun, L., Wan, J., Shen, L., Yu, Y., Hu, L., & Zhou, Y. (2020). Performance of different macrophytes in the decontamination of and electricity generation from swine wastewater via an integrated constructed wetland-microbial fuel cell process. Journal of Environmental Sciences, 89, 252-263.

Logan, B. E. (2008). Microbial fuel cells. John Wiley & Sons.

Logan, B. E. (2009). Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews Microbiology, 7(5), 375-381.

Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., ... & Rabaey, K. (2006). Microbial fuel cells: methodology and technology. Environmental science & technology, 40(17), 5181-5192.

López-Illescas, C., de Moya-Anegón, F., & Moed, H. F. (2008). Coverage and citation impact of oncological journals in the Web of Science and Scopus. Journal of informetrics, 2(4), 304-316.

Lovley, D. R. (2008). The microbe electric: conversion of organic matter to electricity. Current opinion in Biotechnology, 19(6), 564-571.

Lu, M., & Li, S. F. Y. (2012). Cathode reactions and applications in microbial fuel cells: A review. Critical Reviews in Environmental Science and Technology, 42(23), 2504-2525.

Lu, N., Li, L., Wang, C., Wang, Z., Wang, Y., Yan, Y., ... & Guan, J. (2021). Simultaneous enhancement of power generation and chlorophenol degradation in nonmodified microbial fuel cells using an electroactive biofilm carbon felt anode. Science of The Total Environment, 783, 147045.

Malvankar, N. S., Tuominen, M. T., & Lovley, D. R. (2012). Biofilm conductivity is a decisive variable for high-current-density Geobacter sulfurreducens microbial fuel cells. Energy & Environmental Science, 5(2), 5790-5797.

Martinez Ostormujof, L., Teychené, S., Achouak, W., Fochesato, S., Bakarat, M., Rodriguez‐Ruiz, I., ... & Erable, B. (2023). Systemic Analysis of the Spatiotemporal Changes in Multi‐Species Electroactive Biofilms to Clarify the Gradual Decline of Current Generation in Microbial Anodes. ChemElectroChem, e202201135.

Mashkour, M., Rahimnejad, M., Mashkour, M., & Soavi, F. (2020). Electro-polymerized polyaniline modified conductive bacterial cellulose anode for supercapacitive microbial fuel cells and studying the role of anodic biofilm in the capacitive behavior. Journal of Power Sources, 478, 228822.

Mashkour, M., Rahimnejad, M., Mashkour, M., Bakeri, G., Luque, R., & Oh, S. E. (2017). Application of wet nanostructured bacterial cellulose as a novel hydrogel bioanode for microbial fuel cells. ChemElectroChem, 4(3), 648-654.

Mashkour, M., Rahimnejad, M., Raouf, F., & Navidjouy, N. (2021). A review on the application of nanomaterials in improving microbial fuel cells. Biofuel Research Journal, 8(2), 1400-1416.

Me, M. H., & Bakar, M. A. (2020). Tubular ceramic performance as separator for microbial fuel cell: A review. International Journal of Hydrogen Energy, 45(42), 22340-22348.

Mei, X., Xing, D., Yang, Y., Liu, Q., Zhou, H., Guo, C., & Ren, N. (2017). Adaptation of microbial community of the anode biofilm in microbial fuel cells to temperature. Bioelectrochemistry, 117, 29-33.

Munoz-Cupa, C., & Bassi, A. (2023). Investigation of rhamnolipid addition on the microbial fuel cell performance and heavy metal capture in metal laden wastewater. Journal of Water Process Engineering, 54, 104007.

Naaz, T., Kumar, A., Vempaty, A., Singhal, N., Pandit, S., Gautam, P., & Jung, S. P. (2023). Recent advances in biological approaches towards anode biofilm engineering for improvement of extracellular electron transfer in microbial fuel cells. Environmental Engineering Research, 28(5).

Naseer, M. N., Zaidi, A. A., Khan, H., Kumar, S., bin Owais, M. T., Jaafar, J., ... & Uzair, M. (2021). Mapping the field of microbial fuel cell: A quantitative literature review (1970–2020). Energy Reports, 7, 4126-4138..

Nawaz, A., Hafeez, A., Abbas, S. Z., Haq, I. U., Mukhtar, H., & Rafatullah, M. (2020). A state of the art review on electron transfer mechanisms, characteristics, applications and recent advancements in microbial fuel cells technology. Green Chemistry Letters and Reviews, 13(4), 365-381.

Noori, M. T., Ghangrekar, M. M., Mukherjee, C. K., & Min, B. (2019). Biofouling effects on the performance of microbial fuel cells and recent advances in biotechnological and chemical strategies for mitigation. Biotechnology advances, 37(8), 107420.

Obileke, K., Onyeaka, H., Meyer, E. L., & Nwokolo, N. (2021). Microbial fuel cells, a renewable energy technology for bio-electricity generation: A mini-review. Electrochemistry Communications, 125, 107003.

Olias, L. G., & Di Lorenzo, M. (2021). Microbial fuel cells for in-field water quality monitoring. RSC advances, 11(27), 16307-16317.

Oliveira, V. B., Simões, M., Melo, L. F., & Pinto, A. M. F. R. (2013). Overview on the developments of microbial fuel cells. Biochemical engineering journal, 73, 53-64.

Ouyang, T., Hu, X., Liu, W., Shi, X., & Lu, J. (2022). An innovative model for biofilm-based microfluidic microbial fuel cells. Journal of Power Sources, 521, 230940.

Pal, M., Shrivastava, A., & Sharma, R. K. (2023). Electroactive biofilm development on carbon fiber anode by Pichia fermentans in a wheat straw hydrolysate based microbial fuel cell. Biomass and Bioenergy, 168, 106682.

Palanisamy, G., Jung, H. Y., Sadhasivam, T., Kurkuri, M. D., Kim, S. C., & Roh, S. H. (2019). A comprehensive review on microbial fuel cell technologies: Processes, utilization, and advanced developments in electrodes and membranes. Journal of cleaner production, 221, 598-621.

Palanisamy, G., Thangarasu, S., Dharman, R. K., Patil, C. S., Negi, T. P. P. S., Kurkuri, M. D., ... & Oh, T. H. (2023). The growth of biopolymers and natural earthen sources as membrane/separator materials for microbial fuel cells: A comprehensive review. Journal of Energy Chemistry.

Pandit, S., Savla, N., Sonawane, J. M., Sani, A. M. D., Gupta, P. K., Mathuriya, A. S., ... & Prasad, R. (2021). Agricultural waste and wastewater as feedstock for bioelectricity generation using microbial fuel cells: Recent advances. Fermentation, 7(3), 169.

Park, Y., Park, S., Yu, J., Torres, C. I., Rittmann, B. E., & Lee, T. (2017). Complete nitrogen removal by simultaneous nitrification and denitrification in flat-panel air-cathode microbial fuel cells treating domestic wastewater. Chemical Engineering Journal, 316, 673-679.

Picioreanu, C., Head, I. M., Katuri, K. P., van Loosdrecht, M. C., & Scott, K. (2007). A computational model for biofilm-based microbial fuel cells. Water research, 41(13), 2921-2940.

Prabowo, A. K., Tiarasukma, A. P., Christwardana, M., & Ariyanti, D. (2016). Microbial Fuel Cells for Simultaneous Electricity Generation and Organic Degradation from Slaughterhouse Wastewater. International Journal of Renewable Energy Development, 5(2), 107-112.

Prathiba, S., Kumar, P. S., & Vo, D. V. N. (2022). Recent advancements in microbial fuel cells: A review on its electron transfer mechanisms, microbial community, types of substrates and design for bio-electrochemical treatment. Chemosphere, 286, 131856.

Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A., & Oh, S. E. (2015). Microbial fuel cell as new technology for bioelectricity generation: A review. Alexandria Engineering Journal, 54(3), 745-756.

Rahimnejad, M., Bakeri, G., Najafpour, G., Ghasemi, M., & Oh, S. E. (2014). A review on the effect of proton exchange membranes in microbial fuel cells. Biofuel Research Journal, 1(1), 7-15.

Rahimnejad, M., Bakeri, G., Najafpour, G., Ghasemi, M., & Oh, S. E. (2014). A review on the effect of proton exchange membranes in microbial fuel cells. Biofuel Research Journal, 1(1), 7-15.

Rana, S., & Upadhyay, L. S. B. (2020). Microbial exopolysaccharides: Synthesis pathways, types and their commercial applications. International journal of biological macromolecules, 157, 577-583.

Read, S. T., Dutta, P., Bond, P. L., Keller, J., & Rabaey, K. (2010). Initial development and structure of biofilms on microbial fuel cell anodes. BMC microbiology, 10, 1-10.

Rezaei, M., Mostafaeipour, A., Qolipour, M., & Tavakkoli-Moghaddam, R. (2018). Investigation of the optimal location design of a hybrid wind-solar plant: A case study. International journal of hydrogen energy, 43(1), 100-114.

Rojas-Flores, S., Ramirez-Asis, E., Delgado-Caramutti, J., Nazario-Naveda, R., Gallozzo-Cardenas, M., Diaz, F., & Delfin-Narcizo, D. (2023). An Analysis of Global Trends from 1990 to 2022 of Microbial Fuel Cells: A Bibliometric Analysis. Sustainability, 15(4), 3651.

Roldan-Valadez, E., Salazar-Ruiz, S. Y., Ibarra-Contreras, R., & Rios, C. (2019). Current concepts on bibliometrics: a brief review about impact factor, Eigenfactor score, CiteScore, SCImago Journal Rank, Source-Normalised Impact per Paper, H-index, and alternative metrics. Irish Journal of Medical Science (1971-), 188, 939-951.

Rossi, R., Yang, W., Zikmund, E., Pant, D., & Logan, B. E. (2018). In situ biofilm removal from air cathodes in microbial fuel cells treating domestic wastewater. Bioresource technology, 265, 200-206.

Rozendal, R. A., Hamelers, H. V., & Buisman, C. J. (2006). Effects of membrane cation transport on pH and microbial fuel cell performance. Environmental science & technology, 40(17), 5206-5211.

Sajana, T. K., Ghangrekar, M. M., & Mitra, A. (2017). In situ bioremediation using sediment microbial fuel cell. Journal of Hazardous, Toxic, and Radioactive Waste, 21(2), 04016022.

Santoro, C., Arbizzani, C., Erable, B., & Ieropoulos, I. (2017). Microbial fuel cells: From fundamentals to applications. A review. Journal of power sources, 356, 225-244.

Santoro, C., Arbizzani, C., Erable, B., & Ieropoulos, I. (2017). Microbial fuel cells: From fundamentals to applications. A review. Journal of power sources, 356, 225-244.

Santoro, C., Garcia, M. J. S., Walter, X. A., You, J., Theodosiou, P., Gajda, I., ... & Ieropoulos, I. (2020). Urine in bioelectrochemical systems: an overall review. ChemElectroChem, 7(6), 1312-1331.

Saratale, G. D., Saratale, R. G., Shahid, M. K., Zhen, G., Kumar, G., Shin, H. S., ... & Kim, S. H. (2017). A comprehensive overview on electro-active biofilms, role of exo-electrogens and their microbial niches in microbial fuel cells (MFCs). Chemosphere, 178, 534-547.

Sarma, P. J., & Mohanty, K. (2023). Development and comprehensive characterization of low-cost hybrid clay based ceramic membrane for power enhancement in plant based microbial fuel cells (PMFCs). Materials Chemistry and Physics, 296, 127337.

Schröder, U. (2007). Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Physical Chemistry Chemical Physics, 9(21), 2619-2629.

Song, Y. E., Lee, S., Kim, M., Na, J. G., Lee, J., Lee, J., & Kim, J. R. (2020). Metal-free cathodic catalyst with nitrogen-and phosphorus-doped ordered mesoporous carbon (NPOMC) for microbial fuel cells. Journal of Power Sources, 451, 227816.

Srivastava, R. K., Boddula, R., & Pothu, R. (2022). Microbial fuel cells: Technologically advanced devices and approach for sustainable/renewable energy development. Energy Conversion and Management: X, 13, 100160.

Stöckl, M., Teubner, N. C., Holtmann, D., Mangold, K. M., & Sand, W. (2019). Extracellular polymeric substances from Geobacter sulfurreducens biofilms in microbial fuel cells. ACS applied materials & interfaces, 11(9), 8961-8968.

Sun, D., Cheng, S., Wang, A., Li, F., Logan, B. E., & Cen, K. (2015). Temporal-spatial changes in viabilities and electrochemical properties of anode biofilms. Environmental science & technology, 49(8), 5227-5235.

Sun, D., Xie, B., Li, J., Huang, X., Chen, J., & Zhang, F. (2023). A low-cost microbial fuel cell based sensor for in-situ monitoring of dissolved oxygen for over half a year. Biosensors and Bioelectronics, 220, 114888.

Sun, H., Zhang, Y., Wu, S., Dong, R., & Angelidaki, I. (2019). Innovative operation of microbial fuel cell-based biosensor for selective monitoring of acetate during anaerobic digestion. Science of The Total Environment, 655, 1439-1447.

Sunny, N., Mac Dowell, N., & Shah, N. (2020). What is needed to deliver carbon-neutral heat using hydrogen and CCS?. Energy & Environmental Science, 13(11), 4204-4224.

Suransh, J., & Mungray, A. K. (2022). Reduction in particle size of vermiculite and production of the low-cost earthen membrane to achieve enhancement in the microbial fuel cell performance. Journal of Environmental Chemical Engineering, 10(6), 108787.

Tahamtan, I., Safipour Afshar, A., & Ahamdzadeh, K. (2016). Factors affecting number of citations: a comprehensive review of the literature. Scientometrics, 107, 1195-1225.

Tajdid Khajeh, R., Aber, S., Nofouzi, K., & Ebrahimi, S. (2020). Treatment of mixed dairy and dye wastewater in anode of microbial fuel cell with simultaneous electricity generation. Environmental Science and Pollution Research, 27, 43711-43723.

Terbish, N., Popuri, S. R., & Lee, C. H. (2023). Improved performance of organic–inorganic nanocomposite membrane for bioelectricity generation and wastewater treatment in microbial fuel cells. Fuel, 332, 126167.

Thulasinathan, B., Ebenezer, J. O., Bora, A., Nagarajan, A., Pugazhendhi, A., Jayabalan, T., ... & Alagarsamy, A. (2021). Bioelectricity generation and analysis of anode biofilm metabolites from septic tank wastewater in microbial fuel cells. International Journal of Energy Research, 45(12), 17244-17258.

Tian, E., Liu, Y., Yin, F., Lu, S., Zheng, L., Wang, X., ... & Liu, H. (2023). Facilitating proton transport by endowing forward osmosis membrane with proton conductive sites in osmotic microbial fuel cell. Chemical Engineering Journal, 451, 138767.

Tran, H. V., Kim, E., & Jung, S. P. (2022). Anode biofilm maturation time, stable cell performance time, and time-course electrochemistry in a single-chamber microbial fuel cell with a brush-anode. Journal of Industrial and Engineering Chemistry, 106, 269-278.

Van Eck, N. J., & Waltman, L. (2011). Text mining and visualization using VOSviewer. arXiv preprint arXiv, 1109, 2058.

Van Eck, N. J., & Waltman, L. (2013). VOSviewer manual. Leiden: Univeristeit Leiden, 1(1), 1-53.

Van Eck, N., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. scientometrics, 84(2), 523-538.

Van Zalk, J., & Behrens, P. (2018). The spatial extent of renewable and non-renewable power generation: A review and meta-analysis of power densities and their application in the US. Energy Policy, 123, 83-91.

Wang, F., Zhang, D., Shen, X., Liu, W., Yi, W., Li, Z., & Liu, S. (2019). Synchronously electricity generation and degradation of biogas slurry using microbial fuel cell. Renewable Energy, 142, 158-166.

Wang, W., Zhang, Y., Li, M., Wei, X., Wang, Y., Liu, L., ... & Shen, S. (2020). Operation mechanism of constructed wetland-microbial fuel cells for wastewater treatment and electricity generation: A review. Bioresource Technology, 314, 123808.

Wei, J., Liang, P., & Huang, X. (2011). Recent progress in electrodes for microbial fuel cells. Bioresource technology, 102(20), 9335-9344.

Winfield, J., Greenman, J., Huson, D., & Ieropoulos, I. (2013). Comparing terracotta and earthenware for multiple functionalities in microbial fuel cells. Bioprocess and biosystems engineering, 36, 1913-1921.

Xu, G., Zheng, X., Lu, Y., Liu, G., Luo, H., Li, X., ... & Jin, S. (2019). Development of microbial community within the cathodic biofilm of single-chamber air-cathode microbial fuel cell. Science of the total environment, 665, 641-648.

Yang, N., Liu, H., Jin, X., Li, D., & Zhan, G. (2020). One-pot degradation of urine wastewater by combining simultaneous halophilic nitrification and aerobic denitrification in air-exposed biocathode microbial fuel cells (AEB-MFCs). Science of The Total Environment, 748, 141379.

Yang, N., Zhou, Q., Zhan, G., Liu, Y., Luo, H., & Li, D. (2021). Comparative evaluation of simultaneous nitritation/denitritation and energy recovery in air-cathode microbial fuel cells (ACMFCs) treating low C/N ratio wastewater. Science of The Total Environment, 788, 147652.

Yao, S., Hao, L., Zhou, R., Jin, Y., Huang, J., & Wu, C. (2022). Multispecies biofilms in fermentation: Biofilm formation, microbial interactions, and communication. Comprehensive Reviews in Food Science and Food Safety, 21(4), 3346-3375.

Yuan, Y., Zhou, S., Zhao, B., Zhuang, L., & Wang, Y. (2012). Microbially-reduced graphene scaffolds to facilitate extracellular electron transfer in microbial fuel cells. Bioresource technology, 116, 453-458.

Zhang, F., Pant, D., & Logan, B. E. (2011). Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells. Biosensors and Bioelectronics, 30(1), 49-55.

Zhang, L., Zhou, S., Zhuang, L., Li, W., Zhang, J., Lu, N., & Deng, L. (2008). Microbial fuel cell based on Klebsiella pneumoniae biofilm. Electrochemistry communications, 10(10), 1641-1643.

Zhang, Y., & Angelidaki, I. (2011). Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater: focusing on impact of anodic biofilm on sensor applicability. Biotechnology and bioengineering, 108(10), 2339-2347.

Zhuang, Z., Yang, G., & Zhuang, L. (2022). Exopolysaccharides matrix affects the process of extracellular electron transfer in electroactive biofilm. Science of the Total Environment, 806, 150713.




DOI: https://doi.org/10.31315/e.v21i2.11960

Refbacks

  • There are currently no refbacks.

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


Eksergi p-ISSN  1410-394X, e-ISSN 2460-8203,  is published by "Prodi Teknik Kimia UPN Veteran Yogyakarta".

Contact  Jl. SWK 104 (Lingkar Utara) Condong catur Sleman Yogyakarta

 

 Creative Commons License

Eksergi by http://jurnal.upnyk.ac.id/index.php/eksergi/index/ is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 

 

Lihat Statistik Jurnal Kami