ROCK MASS CLASSIFICATION FOR SEDIMENTARY ROCK MASSES IN INDONESIA COAL MINING AREAS

Singgih Saptono ^{1*}, M. Rahman Yulianto¹, Vega Vergiagara¹, Herry Sofyan²

¹⁾ Departement of Mining Engineering
 ²⁾ Departement of Engineering Informatics
 Universitas Pembangunan Nasional Veteran Veteran Yogyakarta
 **Corresponding author*, e-mail: <u>singgihsaptono@upnyk.ac.id</u>

Abstract

The stability of rock slopes is important for the safety of personnel and equipment in the open pit mine. Slope instability and failure occur due to many factors such as adverse slope geometry, geological discontinuities, weak or weathered slope material due to weather influences. External loads such as high rainfall and seismicity could play an important role in slope failure. For this reason, a precise classification of rock mass is needed for the basis of determining technical policy. Rock slopes in open pit coal mining areas, especially in Indonesia, are characterized by applying various rock mass classification systems, such as Rock Mass Rating (RMR) and Geological Strength Index (GSI), because the study area comprises well exposed rock formations. In the RMR system, there are five main parameters viz. Uniaxial Compressive Strength (UCS) of rocks, Rock Quality Designation (RQD), spacing of discontinuity, discontinuity conditions, and groundwater conditions were considered. In this paper, several rock mass classification systems developed for the assessment of rock slope stability were evaluated with the condition of rock slopes in the tropics, especially Indonesian region, particularly in sedimentary rocks in the open pit coal mining area in order to get the corrected GSI equation used to characterize rock slopes based on quantitative analysis of rock mass structure and surface conditions of discontinuities.

INTRODUCTION

One of the easiest ways to changes mine design for efficiency purposes is to minimize the stripping ratio or make the mine slopes both single slopes and overall slopes as high and as straight as possible. This slope conditions will be efficient and effective for mining. However, these dimensional changes couldn't be immediately realized without knowing the strength of rock mass or stability of mine slope or safety factor. Development of methods for determining slope stability needs to pay attention for summary of various studies relating to soft rocks, rock mass characterization, the influence of scale, rock strength and rock mass which related to slope stability problems. Research on the strength of soft rocks has been carried out by Johnstone & Choi (1986), Indraratna (1990), Johnstone (1991). While in Indonesia by Kramadibrata

et al. (2002, 2007), Wattimena et al. (2009), Kramadibrata et al. (2009), and Sulistianto et al. (2010). The strength characteristics of soft rocks are very susceptible to water content increase, so that rocks will decay and cause a strength decrease from hard to soft rocks (Johnstone & Choi, 1986, Johnstone, 1991). This soft rock is often founded in coal mining areas in Indonesia, one of which is the coal mine in Ombilin (Herryal, 1999, 2000). In addition to increasing the water content, rock strength is also influenced by discontinuities. The effect of discontinuities on rock strength could be determined by laboratory and field testing.

Several methods of estimating rock mass strength have been developed by applying rock mass classification, one of them is Rock Mass Rating (RMR, Bieniawski (1973, 1989)). RMR is the basis for developing more specific rock mass classifications, for example rock mass classification for slope stability analysis. The classification system for slope stability analysis has been developed by several researchers, namely Selby (1980, 1981), Moon & Selby (1983), Romana (1985), Swindells (1985), Robertson (1988), Haines & Terbrugge (1991), Orr (1992) and Hoek et al. (1995).

Slope instability, rock mass and groundwater conditions and critical zones as shear zones need to be anticipated as geological engineering problems (Bhatta, 2006) that appear during excavation. Therefore, the treatments recommended are largely based on the classification of rock masses with measurable parameters (Goodman, 1989). The behavior of rock masses is regulated by intact rock material properties and discontinuities (Sen and Sadagah, 2003). The rock mass strength given by the shear strength of the discontinuity surface usually depends on one or more factors such as orientation, spacing, continuity, surface characteristics, discontinuity surface separation, and and the accompanying thickness and nature of filling material (if present). There are several approaches that characterize and classify rock masses known as geomechanical classifications. Such as Rock Mass Rating (RMR) given by Bieniawski (1989) which is based on detailed field and laboratory studies involving the collection of data on the observation slope. Another approach is the Geological Strength Index (GSI). The GSI value is related to the degree of fracture and discontiunity surface conditions. Therefore, the RMR and GSI approaches used in this study were focused on the characteristics of sedimentary rock masses in Indonesian coal mines.

LOCATION OF THE STUDY AREA

The location of rock sampling is carried out in several places in lowwall Pit PAMA, SIS, BUMA and RA. Meanwhile, rock mass characterization was carried out in 22 sections consisting of 13 sections in PAMA Pit, 5 sections in the SIS and 4 sections in BUMA Pit and RA. The choice of location for rock sampling and characterization of rock

mass is based on the completeness of laboratory and structural data, operational ease and safety. Characterization of rock mass carried out at Tutupan mine, generally on the low wall slope and the measurement locations are marked with Strip (S), Block (B) and RL (Relative Level).

Table 1. shows the sampling locations and characterization of rock mass and for the example of large block shear tests are coarse sandstone (BPk), fine sandstone (BPh) and mudstone (BL). The Strip (S) indicates the abscissa from East to West. The greater value of Strip means the location is getting east and Block (B) expresses the ordinate direction from South to North (Table 1).

FIGURE 1. Tutupan mine (Saptono & Kramadibrata, 2008 a, b, c)

Section	Sample	Location		
	code	S	В	RL
1	BPk1	40	69	49
2	BPk2	40	64	36
3	BPh1	43	61	-5
4	BPh2	43	61	3
5	BPh3	47	102	80
6	BPh4	44	77	-71
7	BPh5	45	77	-50

TABLE I. Location of rock sampling

BPh6	52	103	26
BPk3	52	102	26
BPk4	52	132	86
BPk5	60	144	70
BPk6	40	61	64
BPk7	40	61	70
BPk8	39	67	61
BPh7	37	68	70
BPh8	46	67	-37
BPh9	46	68	-37
BPh10	44	96	107
BPh11	45	96	108
BL1	60	127	108
BL2	47	93	88
BL3	48	96	102
	BPk3 BPk4 BPk5 BPk6 BPk7 BPk8 BPh7 BPh8 BPh9 BPh10 BPh11 BL1 BL2	BPk352BPk452BPk560BPk640BPk740BPk839BPh737BPh846BPh946BPh1044BPh1145BL160BL247	BPk352102BPk452132BPk560144BPk64061BPk74061BPk83967BPh73768BPh84667BPh94668BPh104496BPh114596BL160127BL24793

S = strip, B = block, RL = relative level

ROCK MASS CLASSIFICATION

The rock mass classification used were RMR and GSI classification. The RMR and GSI classification systems can be applied for slope stability analysis, which can determine cohesion and friction angles in rock masses according to rock class as parameters of the Mohr-Coulomb and Hoek & Brown collapse criteria.

Rock Mass Rating (RMR)

The RMR system was invented by Bieniawski (1973 - 1989) to evaluate the quality of rock mass for underground projects. The RMR system consists of five basic parameters that represent different rock conditions and discontinuities. These parameters are: (1) UCS of intact rock, (2) RQD, (3) discontinuities spacing, (4) discontinuities condition, and (5) groundwater. This RMR system is known as the " the basic RMR" and gives values that range between 0 and 100 (Bieniawski, 1973). Additional parameters were proposed by Bieniawski (1976) to explain the effect of discontinuity orientation on stability conditions (correction factor). However, this parameter was introduced for tunnel and dam foundations but not for slopes (Aksoy, 2008). Therefore, Bieniawski (1989) applies more descriptive details in the fourth parameter of the basic RMR (condition of discontinuity). Tables 1 and 2 show show the classification criteria of RMR and their different rock mass classes (Bieniawski, 1989).

Parameter		Range of values										
1 Strength of intact Point-load strength rock mineral index (MPa)		>10	4–10	2-4	1-2	For the low range, uni compression test is pr						
	UCS (MPa)	>250	100-250	50-100	25-50	5-25 1-5	<1					
Rating		15	12	7	4	2 1	0					
2 Drill core RQD (%)	90-100	75-90	50-75	25-50	<25						
Rating		20	17	13	8	3						
3 Spacing of disco	ntinuities	>2 m	0.6–2 m	200-600 mm	60-200 mm	<60 mm						
Rating		20	15	10	8	5						
4 Condition of discontinuities (see Table 2)		 Very rough surfaces 	 Slightly rough surfaces 	 Slightly rough surfaces 	 Slickensided surfaces, or 	 Soft gouge >5 mm thick, or 						
		 Not continuous No separation 	<1 mm	 Separation <1 mm 	 Gouge < 5 mm thick, or 	 Separation > 5 mm (Continuous) 						
		 Unweathered wall rock 	 Slightly weathered walls 	 Highly weathered walls 	 Separation 1–5 mm (Continuous) 							
Rating		30	25	20	10	0						
5 Groundwater	Inflow per 10 m tunnel length (L/min)	None	<10	10-25	25-125	>125						
	Ratio of joint water pressure to major principal stress	0	<0.1	0.1-0.2	0.2-0.5	>0.5						
	General condition	Completely dry	Damp	Wet	Dripping	Flowing						
Rating		15	10	7	4	0						

TABLE I. Rock rating system (Bieniawski, 1989)

TABLE II. Guidelines for classification of discontinuity condition in RMR.

Discontinuity le	ngth (persistence)	Separation (ap	Separation (aperture)			Infilling (gouge)		Weathering	Weathering		
Value (m)	Rating	Value (mm)	Rating	Description	Rating	Description	Rating	Description	Rating		
<1	6	None	6	Very rough	6	None	6	Unweathered	6		
1-3	4	<0.1	5	Rough	5	Hard filling < 5 mm	4	Slightly weathered	5		
3-10	2	0.1-1.0	4	Slightly rough	3	Hard filling > 5 mm	2	Moderately weathered	3		
10-20	1	1-5	1	Smooth	1	Soft filling < 5 mm	2	Highly weathered	1		
>20	0	>5	0	Slickensided	0	Soft filling > 5 mm	0	Decomposed	0		
Rating	Class		Descripti	on							
100-81	I		Very goo	d rock							
80-61	II		Good roc	k							
60-41	III		Fair rock								
40-21	0–21 IV Poor ro		Poor rock	C							
<20	V		Very poo	r rock							

Geological Strength Index (GSI)

Meanwhile, to determine the rock mass class based on GSI is divided into two parameters, namely rock mass surface conditions and rock structure. Based on the parameters of the surface conditions of rock masses consisting of very good rocks, good rocks, fair rocks, poor rocks and very poor rocks, while based on rock structure consisting intact rocks, blocky, very blocky, disturbed, disintegrated and laminated (Table 3).

As input parameters to determine rock mass class of Tutupan area is from the results of the uniaxial compressive strength test, the discontinuities orientation, discontinuities spacing and RQD, the condition of discontinuities and groundwater for each cross-section, and then the results are used as input parameters for classifying the rock mass of each cross-section. The parameters of discontinuities consisting of continuity, spacing, roughness, filling and weathering as well as groundwater condition parameters are rated to obtain the value (Table 4).

The parameters of uniaxial compressive strength, RQD, and the actual distance of discontinuities are rated to get the value. This is also done on the parameters of discontinuity conditions, groundwater conditions and general orientation of discontinuity conditions for each cross-section (Table 5). To obtain the value of the RMR for each cross section by adding up the rate of each parameter. For example, if $\sigma_c = 13.4$ MPa, the value is 2.3, etc.

Based on the sum of the parameters rate show that the highest value of RMR is 71 (cross-section of 5 types of fine sandstone) and the lowest value of RMR is 24 (cross-section of 13 types of coarse sandstone). Based on the (Table 5) rock mass rating in Tutupan mine could be classified into rock mass class II (good rock) and class IV (poor rock).

GEOLOGICAL STRENGTH INDE) JOINTED ROCKS (Hoek and Mari From the lithology, structure and conditions of the discontinuities, e the average value of GSI. Do no be too precise. Quoting a range to 37 is more realistic than stati GSI=35. Note that the table dk apply to structurally controlled i Where weak planar structural plan present in an unfavorable oriel with respect to the excavation fact will dominate the rock mass by The shear strength of surfaces in that are prone to deterioration as of changes in moisture content reduced if water is present. Whee ing with rocks in the fair to ve categories, a shift to the right of made for wet conditions. Water p is dealt with by effective stress a STRUCTURE	inos, 2000) surface ssimate of try to from 33 ing that bes not failures. nes are entation a result will be n work- ny poor ry poor ry poor	G VERY GOOD S Very rough, fresh unweathered surfaces	ố 2 GOOD 8 Rough, slightly weathered, iron stained surfaces 0 C	BL DAF FAIR The Smooth, moderately weathered and altered surfaces	POOR Slickensided, highly weathered surfaces with compact coatings or fillings or angular fragments	VERY POOR Slickensided, highly weathered surfaces with soft clay coafings or fillings
		77	17	77		
INTACT OR MASSIVE— rock specimens or massi rock with few widely space discontinuities	ive <i>in situ</i> ced	90			N/A	N/A
BLOCKY—well interlock disturbed rock mass con of cubical blocks formed intersecting discontinuity	sisting 💥 bythree Q		70			
VERY BLOCKY—interloo partially disturbed mass multi-faceted angular blo formed by 4 or more join	cked, UNXO with XOOT cks OOT t sets Bu			20		
BLOCKY/DISTURBED/S —folded with angular blo formed by many intersec discontinuity sets. Persis of bedding planes or sch	ting U tence of			40	»	\square
DISINTEGRATED—poor locked, heavily broken ro with mixure of angular ar rounded rock pieces	ntyinter- ck mass				20	
LAMINATED/SHEARED of blockiness due to clos of weak schistosity or sh	—lack e spacing	N/A	N/A			10

TABLE III. Rock mass classification based on GSI (Hoek & Brown, 2002)

		Loca	ation		Disconti	nuities co	ndition				– Groundwater
ross-section	Rock types	S	В	RL	Continu > 0,6 h	ity < 0,6 h	Aperture	Roughness	Filling	Weathering	condition
	Coarse sandstone	40	69	49	6%	94%	< 0,1 mm	fine	-	Low rate	dry
	Coarse sandstone	40	64	36	17%	83%	0,1 - 1.0 mm	fine	Hard filler < 5 mm	Low rate	dry
	Fine sandstone	43	61	-5	4%	96%	0,1 - 1.0 mm	fine	Hard filler < 5 mm	High rate	moist
	Fine sandstone	43	61	3	6%	94%	0,1 - 1.0 mm	fine	Hard filler < 5 mm	Low rate	dry
	Fine sandstone	47	102	80	3%	97%	< 0,1 mm	bit rough	-	Low rate	dry
	Fine sandstone	44	77	-71	38%	62%	0,1 - 1.0 mm	fine	Hard filler < 5 mm	Low rate	dry
	Fine sandstone	45	77	-50	35%	65%	0,1 - 1.0 mm	fine	-	Medium rate	dry
	Fine sandstone	52	103	26	36%	64%	0,1 - 1.0 mm	fine	-	Medium rate	moist
1	Coarse sandstone	52	102	26	30%	70%	0,1 - 1.0 mm	fine	-	Low rate	dry
0	Coarse sandstone	52	132	86	6%	94%	< 0,1 mm	fine	-	Low rate	dry
1	Coarse sandstone	60	144	70	8%	92%	< 0,1 mm	fine	Hard filler < 5 mm	Low rate	dry
2	Coarse sandstone	40	61	64	3%	97%	0,1 - 1.0 mm	fine	Hard filler < 5 mm	Low rate	dry
3	Coarse sandstone	40	61	70	5%	95%	0,1 - 1.0 mm	fine	Soft filler < 5 mm	Medium rate	moist
4	Coarse sandstone	39	67	61	15%	85%	< 0,1 mm	fine	Hard filler < 5 mm	Medium rate	dry
5	Fine sandstone	37	68	70	5%	95%	0,1 - 1.0 mm	fine	-	Low rate	moist
6	Fine sandstone	46	67	-37	7%	93%	< 0,1 mm	fine	Hard filler < 5 mm	Low rate	dry
7	Fine sandstone	46	68	-37	4%	96%	< 0,1 mm	bit rough	-	Low rate	moist
8	Fine sandstone	44	96	107	1%	99%	< 0,1 mm	bit rough	-	Low rate	moist
9	Fine sandstone	45	96	108	3%	97%	Tidak ada	fine	-	Low rate	moist
0	Mudstone	60	127	108	7%	93%	Tidak ada	fine	-	Low rate	dry
1	Mudstone	47	93	88	3%	97%	< 0,1 mm	fine	-	Low rate	dry

TABLE IV. The characterization results of rock mass discontinuities in Tutupan mine

Mudstone

102 8%

48 96

92%

Tidak ada

fine

-

Low rate

dry

		IAD	EL V.	RUCK	mass cia	ss Daset		and GSI TOCK	mass classifica	ation system			
Cross		Loca	tion					Discontinuity rat	ing		_		Rock mass
section	Rock types	S	В	RL	σ _c (MPa)	RQD (%)	spacing (cm)	Dicsontinuity condition	Groundwater condition	Discontinuity orientation	RMR	GSI	class
1	Coarse sandstone	40	69	49	13,47 2,30	97,54 19,50	42,00 10,10	23	15	-10	60	61	III Fair rock
2	Coarse sandstone	40	64	36	8,68 1,80	94,63 18,90	27,00 8,70	22	15	-20	42	56	III Fair rock
3	Fine sandstone	43	61	-5	1,24 1,10	98,56 19,70	56,00 11,30	18	15	-25	25	50	IV Poor rock
4	Fine sandstone	43	61	3	4,46 1,40	92,46 18,40	22,00 8,20	20	15	-25	38	55	IV Poor rock
5	Fine sandstone	47	102	80	28,30 3,60	98,85 19,80	63,00 11,80	24	15	-5	71	66	ll Good rock
6	Fine sandstone	44	77	-71	16,20 2,50	96,95 19,40	27,00 8,70	21	15	-25	40	57	IV Poor rock
7	Fine sandstone	45	77	-50	2,92 1,30	90,98 18,10	20,00 8,00	20	15	-25	37	54	IV Poor rock
8	Fine sandstone	52	103	26	1,80 1,20	96,74 19,30	36,00 9,60	20	10	-25	35	57	IV Poor rock
9	Coarse sandstone	52	102	26	1,80 1,20	90,98 18,10	20,00 8,00	22	10	-25	34	56	IV Poor rock
10	Coarse sandstone	52	132	86	8,68 1,80	94,63 18,90	27,00 8,70	23	15	-25	42	58	IV Poor rock
11	Coarse sandstone	60	144	70	13,47 2,30	98,25 19,70	50,00 10,80	21	15	0	69	60	ll Good rock
12	Coarse sandstone	40	61	64	2,92 1,30	93,02 18,50	23,00 8,30	20	15	-25	38	55	IV Poor rock
13	Coarse sandstone	40	61	70	1,80 1,20	73,58 14,50	10,00 6,80	18	15	-25	24	46	IV Poor rock
14	Coarse sandstone	39	67	61	2,92 1,30	93,57 18,60	24,00 8,40	19	15	-25	37	54	IV Poor rock
15	Fine sandstone	37	68	70	1,32	90,98	20,00	22	10	-40	24	55	IV

TABEL V. Rock mass class based on RMR and GSI rock mass classification system

Journal Techno Vol. 2 No. 1 November 2020

-

					1,10	18,10	8,00						Poor rock
16	Fine sandstone	46	67	-37	1,80	86,48	16,00	21	15	-25	37	53	IV
10	The salustone	40	07	-57	1,20	17,20	7,50	21	15	-25	57	55	Poor rock
17	Fine sandstone	46	68	-37	4,46	90,98	20,00	25	10	-25	37	58	IV
17	Fille Sallustolle	40	08	-57	1,40	18,10	8,00	25	10	-25	57	20	Poor rock
18	Fine sandstone	44	96	107	28,3	98,85	63,00	25	10	0	70	66	II
10	Fille Sallustolle	44	90	107	3,60	19,80	11,80	25	10	0	70	00	Good rock
10	Fine sandstone	45	06	100	28,3	98,56	56,00	24	10	0	69	C٢	П
19	Fine sandstone	45	96	108	3,60	19,70	11,30	24	10	0	69	65	Good rock
20	Mudstone	60	177	100	3,57	85,46	15,00	20	1	1 5	10	52	111
20	windstone	60	127	108	1,30	16,90	7,40	20	15	-15	46	52	Fair rock
21	N 4	47	02	00	1,84	98,85	63,00	21	15	0	60	60	П
21	Mudstone	47	93	88	1,20	19,80	11,80	21	15	0	69	60	Good rock
22	N 4	40	00	102	1,78	71,74	10,00	25	15	25	27	52	IV
22	Mudstone	48	96	102	1,20	14,20	6,80	25	15	-25	37	53	Poor rock

S = strip, B = block, RL = Relative Level, σ_c = Uniaxial Compressive Strength , RQD = Rock Quality Designation, RMR = Rock Mass Rating dan GSI = Geological Strength Index.

Based on the results of rock mass characterization, GSI shows that the highest value is 66 (cross section 5 fine sandstone) and the lowest is 46 (cross section 13 coarse sandstone), then it can be classified as good and fair rocks with the structure of relationships between grains including blocky and very blocky (TABLE VI).

GEOLOGICAL STRENGTH INDEX FOR JOINTED ROCKS (Hoek and Marinos, 2000) From the lithology, structure and surface conditions of the discontinuities, estimate the average value of GSI. Do not try to be too precise. Quoting a range from 33 to 37 is more realistic than stating that GSI=35. Note that the table does not apply to structurally controlled failures. Where weak planar structural planes are present in an unfavorable orientation with respect to the excavation face, these will dominate the rock mass behavior. The shear strength of surfaces in rocks that are prone to deterioration as a result of changes in moisture content will be reduced if water is present. When work- ing with rocks in the fair to very poor categories, a shift to the right may be made for wet conditions. Water pressure is dealt with by effective stress analysis.		S GOOD Pough, slightly weathered, iron stained surfaces C	PA FAIR M Smooth, moderately weathered and altered surfaces	POOR Slickensided, highly weathered surfaces with compact coatings or fillings or angular fragments	VERY POOR Slickensided, highly weathered surfaces with soft clay coafings or fillings
INTACT OR MASSIVE—intact rock specimens or massive in situ rock with few widely spaced discontinuities	90			N/A	N/A
BLOCKY—well interlocked un- disturbed rock mass consisting of cubical blocks formed by three intersecting discontinuity sets		70			
VERY BLOCKY—interlocked, partially disturbed mass with multi-faceted angular blocks formed by 4 or more joint sets			×0		
VERY BLOCKY—interlocked, partially disturbed mass with multi-faceted angular blocks formed by 4 or more joint sets BLOCKY/DISTURBED/SEAMY —folded with angular blocks formed by many intersecting discontinuity sets. Persistence of bedding planes or schistosity DISINTEGRATED—coorty inter-			Ĩ	200	\square
DISINTEGRATED—poorly inter- locked, heavily broken rock mass with mixure of angular and rounded rock pieces	\langle / \rangle			20	
LAMINATED/SHEARED—lack of blockiness due to close spacing of weak schistosity or shear planes	N/A	N/A			10

TABLE VI. GSI values for classifying rock masses based on rock particle relationships and discontinuity conditions

DETERMINATION OF THE RELATIONSHIP BETWEEN GSI AND RMR

Hoek & Brown (1997) make an empirical equation of the relationship between determining GSI as a function of RMR_{89} , i.e.

 $GSI = RMR_{89} - 5 \qquad \dots (4.1)$ Equation (4.1) applies to RMR> 23. If RMR <23, then the equation GSI, i.e. $GSI = RMR_{76} \qquad \dots (4.2)$

The subscrit on the RMR indicates the year of manufacture, for example RMR₈₉ signifies RMR was made by Bieniawski in 1989, as well as for RMR₇₆. The difference rating of RMR₇₆ and RMR₈₉ is in the block size parameters (space and RQD), discontinuity conditions and groundwater conditions. Rating for the block size of RMR₇₆ between 8 - 50 and RMR₈₉ between 8 - 40, Rating for discontinuity conditions at RMR₇₆ between 0-25 and RMR₈₉ between 0 - 30 and rating for groundwater conditions at RMR₇₆ between 0 - 10 and RMR₈₉ between 0 - 10 15

Hoek & Brown's empirical equation (4.1) and (4.2) were applied to the RMR with dry rock mass conditions with the groundwater conditions rating of 10 for RMR₇₆ and 15 for RMR₈₉ and did not take into account the general direction conditions of discontinuity. The results of this RMR are calculated from the results of calculations based on four parameters of the RMR classification system. The purpose of knowing RMR is to make a relationship between GSI and RMR.

According to the calculation of the four main parameters of the Tutupan mine RMR obtained RMR $_{(B)}$ as in TABLE VII. Based on the rating results of the RMR obtained the lowest value of RMR is 54 for coarse sandstone (cross section 13) and the highest value of RMR is 75 for fine sandstone (cross section 5 and cross section 18).

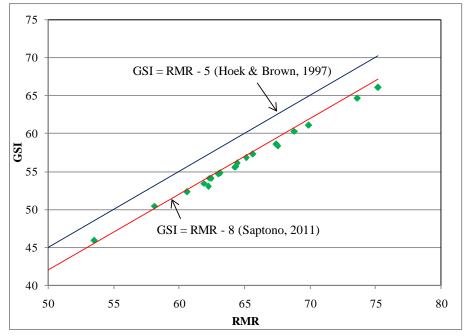
Cross section	σc	RQD	Spacing	Discontinuity conditions	Groundwater conditions	RMR
1	2,3	19,5	10	23	15	70
2	1,8	18,9	9	20	15	64
3	1,1	14,7	11	16	15	58
4	1,4	18,4	8	20	15	63
5	3,6	19,8	12	25	15	75
6	2,5	19,4	9	20	15	66
7	1,3	18,1	8	20	15	62
8	1,2	19,3	10	20	15	65
9	1,2	18,1	8	22	15	64
10	1,8	18,9	9	23	15	67
11	2,3	19,7	11	21	15	69
12	1,3	18,5	8	20	15	63
13	1,2	14,5	7	16	15	54
14	1,3	18,6	8	19	15	62
15	1,1	18,1	8	22	15	64
16	1,2	17,2	8	21	15	62
17	1,4	18,1	8	25	15	68

TABLE VII. Rating of each parameter to get the RMR value of Tutupan mine

18	3,6	19,8	12	25	15	75
19	3,6	19,7	11	24	15	74
20	1,3	16,9	7	20	15	61
21	1,2	19,8	12	21	15	69
22	1,2	14,2	7	25	15	62

Hereinafter, the RMR value will be used to calculate the GSI value by equation (4.1; Hoek & Brown, 1997). Furthermore, the relationship between GSI according to Hoek & Brown (1997) and GSI characterization results. There are difference calculation results between the GSI values according to equation (4.1) and the results of the characterization (TABLE VIII). TABLE VIII shows the results of the RMR, GSI according to Hoek & Brown (1997) and the results of the characterization.

HUER & DI	<u>own s (15</u>	197 J allu cila	Tactel Ization Tesuit
RMR	GSI	GSI*)	GSI **)
70	61	65	62
64	56	59	56
58	50	53	50
63	55	58	55
75	66	70	67
66	57	61	58
62	54	57	54
65	57	60	57
64	56	59	56
67	59	62	59
69	60	64	61
63	55	58	55
54	46	49	46
62	54	57	54
64	56	59	56
62	53	57	54
68	58	63	60
75	66	70	67
74	65	69	66
61	52	56	53
69	60	64	61
62	53	57	54
	D 1	007) **) CCI	


TABLE VIII. The value of Rock Mass Rating (RMR), GSI Hoek & Brown's (1997) and characterization results

*) GSI = RMR – 5 (Hoek & Brown, 1997); **) GSI = RMR – 8

By making a graph of the relationship of RMR value, GSI characterization results, GSI according to Hoek & Brown (1997) and the correction result GSI will be clearly seen when equation (4.1) was applied, there appear 3 to 4 values deviation from the result of GSI characterization in soft rocks.

The difference of value between GSI according to Hoek & Brown (1997) with GSI measurement is 3 and 4, therefore to calculate GSI from RMR is to reduce it by 8 scores, so the Hoek & Brown equation changes from

GSI = RMR - 5 [4.3] to be GSI = RMR - 8 [4.4]

FIGURE 2. Comparison between the corrected GSI equation and Hoek & Brown GSI (1997) equation

CONCLUSION

The following conclusions can be drawn from the present study:

- The rock mass classification at the Tutupan site shows that RMR ranged from 24 (cross-section of 13 types of coarse sandstone) to 71 (cross-section of 5 types of fine sandstone) and the rest fall in poor to good rock mass categories. In terms of GSI, the majority of the rock masses have fair to good GSI (46 to 66)
- 2) The GSI equation obtained to corrects the Hoek & Brown (1997) equation to be applied in sediment rock masses in coal mines, i.e.
 GSI = RMR 8

ACKNOWLEDGMENTS

Authors are thankful to Research institutions and community service (LPPM) of Universitas Pembangunan Nasional "Veteran" Yogyakarta for financial support.

REFERENCES

- 1. Barton, N. and Stephansson (1990): *Rock Joint Review of Predictive Capabilities of JRC-JCS Model in Engineering Practice*, Proc. Intrnl. Symp. On Rock Joint, Leon, Norway.
- 2. Barton, N.R. (1976): *The shear strength of rock and rock joints*, Intl. J. Rock Mech. Min. & Sci. Vol. 13: 255-279.
- 3. Bieniawski, Z.T. (1968): *The Effect of Specimen Size on The Strength of Coal*, International Journal on Rock Mechanics and Mining Sciences & Mecahnics Abstracts, V. 5 n. 4, 325-335.
- 4. Bieniawski, Z.T. (1973): *Engineering Classification of Jointed Rock Masses*, Trans. S. Afr. Inst. Civ. Eng. 15. pp. 335 344.
- 5. Bieniawski, Z.T. (1989): *Engineering Rock Mass Classifications*, John-Wiley, New York.
- 6. Brady, B.H.G. and Brown, E.T. (1985): *Rock Mechanics for Underground Mining,* George Allen and Unwin, London.
- 7. Dwinagara, B. (2006): Penentuan Kekuatan Jangka Panjang Massa Batuan Dengan Metode Tidak Langsung dari Hasil Pengukuran dan Pengujian Insitu, Disertasi, ITB, Bandung.
- 8. Edmond, J.M. and Paterson, M.S. (1972): *Volume Changes during The Deformation of Rocks at High Pressures*, Int. Journ. Rock Mech. Min. & Sci., Vol. 9, pp. 161-182.
- 9. Grasselli, G. (2001): *Shear Strength of Rock Joints Based on Quantified Surface Description*, Geophysical Technology Department, Sandia National Laboratories, New Mexico, USA.
- Griffith, A.A. (1925): *The Theory of Rupture*, Proceeding of 1st Institutional Congress of Applied Mechanics, Delft. Biezeno and Burgers ed. Waltman, pp. 55 – 63.
- Haines, A. and Terburgger, P.J. (1991): Preliminary Estimation of Rock Slope Stability Using Rock Mass Classification System, Proc. 7th Int. Society Rock Mechanics (Herausgeber ed.) Aachen. Vol 2 pp. 887 – 892.
- 12. Herget, G. (1988): Stresses in Rock, A.A. Balkema Publ: 179p.
- Herryal, Z.A., Shimada, H., Ichinose, M., Matsui, K., Zulfahmi, M.F., (1999): Study on The Application of Rock Bolting Technology in Ombilin and Ikeshima Coal Mine, Ed. Matsui K., and Shimada, H. Japan-Korea Joint Symposium on Rock Engineering, Fukuoka, Japan.
- 14. Herryal, Z.A. (2000): *Study on the progression and control of rock strength deterioration due to water*, Ph.D. Dissertation, Department of Earth Resources Engineering, Kyushu University.
- 15. Hoek, E. (1994): *Strength of Rock and Rock Masses*, ISRM News Journal, 2 No. 2, 4-16.
- 16. Hoek, E. and Bray, J.W. (1981): *Rock Slope Engineering,* Institution of Mining and Metallurgy, London.
- 17. Hoek, E. and Brown, E.T. (1980): *Underground Excavation in Rock*, The Institute of Mining and Metallurgy, London.
- 18. Hoek, E. and Brown, E.T. (1988): *The Hoek-Brown Failure Criterion a 1988 Uapdate*, Proceedings of the 15th Canadian Rock Mechanics Symposium, Toronto.

- 19. Hoek, E., Kaiser, P.K. and Bawden, W.F. (1995): *Support of Underground Excavation in Hard Rock,* A.A. Balkema, Rotterdam.
- 20. Horino, F.G. and Ellicksone, M.L.A., (1970): *Method of estimating the strength of rock containing planes of weakness*, no.7449. US Bureau mines, report investigation.
- 21. Horkel, A. (1990): On The Plate-Tectonic Setting of The Coal Deposits of Indonesia and The Philippines, Mitt. osterr. Geol. Ges., pp. 119 133. Vienna.
- 22. ISRM (1981): *Rock Characterization Testing and Monitoring ISRM Suggested Method.* E.T. Brown (Ed). Pergamon Press. 5 30.
- 23. ISRM Suggested Methods (1976): *Quantative Description of Discontinuities, Int.J. Rock Mech. Sc. & Geomech. Abstrc.* 15. 319 – 368.
- 24. Janbu, N. (1954): *Stability Analysis of Slopes with Dimensionless Parameter*, D.Sc. thesis, Harvard Univerity, Cambridge, MA.
- 25. Johnstone, I. W. (1991): Discussion on The Development and Applications of A Synthetic Material to Simulate Soft Sedimentary Rock, Geotchnique, Vol. 41. No. 1, pp. 165 167.
- 26. Kramadibrata, S. (1996): *The Influence of Rock Mass and Intact Rock Properties on The Design of Surface Mines with Particular Reference to The Excavatability of Rock*, Ph. D. Thesis, Curtin University of Technology.
- 27. Kramadibrata, S. and Jones, I.O. (1993) : *Size Effect on Strength and Deformability of Brittle Intact Rock, Scale Effects in Rock Masses*, Proc. of the Second International Workshop on Scale Effects in Rock Masses, Lisbon, Portugal, (ed. A. Pinto Da Cunha), A.A. Balkema, Rotterdam.
- 28. Kramadibrata, S. Hindarto, H. and Sularmo, W. (2002): *The Role of Time Dependent Analysis to Improve Environmental Management System in Mine Closure Plan in Open Pit Mine*, UNEP/SETAC/APEC-GEMEED/ICMM/NRCan, April 15 to 17, 2002, Montreal, Canada.
- 29. Kramadibrata, S., Saptono, S., Sulistianto, B. and Wattimena, R.K. (2011a): Penentuan Kriteria dan Prosedur Analisis Stabilitas Lereng Batuan Lunak di Tambang Terbuka Batubara, DIPA – Dikti, Pameran Poster, ITB, Bandung.
- 30. Kramadibrata, S., Saptono, S., Sulistianto, B. and Wattimena, R.K. (2011b): *Pengujian Geser Langsung Skala Besar di Lapangan*, Riset KK ITB, Pameran Poster, ITB, Bandung.
- 31. Kramadibrata, S., Saptono, S., Wattimena, R.K., and Simangunsong, G.M. (2011c): Developing A Slope Stability Curve of Open Pit Coal Mine by Using Dimensional Analysis Method, ISRM, Beijing.
- 32. Kramadibrata, S., Saptono, S., Wicaksana, Y. and Prasetyo H. S. (2009): *Soft Rock Behavior with Particular Reference to Coal Bearing Strata*, The 2nd International Symposium of Novel Carbon Resources Science, Earth Resource Science and Technology, Joint Symposium Kyushu University Institut Teknologi Bandung.
- 33. Li, A.J., Merifield, R.S. and Lyamin, A.V. (2008): *Stability Charts for Rock Slopes Based on The Hoek-Brown Failure Criterion*, International Journal of Rock Mechanics & Mining Sciences 45 (2008) 689 – 700.
- 34. Lin, Y. (1998): An Introduction of The Chinese Standard for Engineering Classification of Rock Mass, In Advances in Rock Mechanics (Lin ed.), World Scientific Publishing Co., Singapore, pp. 317-327.

- 35. Londe, P. (1973): *The Role of Rock Mechanics in The Reconnaissance of Rock Foundations*, Qly J. Engng Geol., Vol 6/1.
- 36. Michalowski, R.L. (2002): *Stability Charts for Uniform Slopes*, Journal of Geotchnical and Geoenviromental Engineering, Vol. 128. No.4.
- 37. Mogi, K. (1962): *The Influence of The Dimensions of Specimens on The Fracture Strength Of Rocks*, Bull earthquake. Res. Inst., 40: 175-185.
- *38.* Moon, B.P. and Sleby, M.J. (1983): *Rock Mass Strength and Scrap Forms in Southern Africa*, Geografisika Annaler. Ser. A, 65:135 145.
- 39. Muratha, J. and Cunha, P.A. (1990): *About LNEC Experience on Scale Effects in The Mechanical Behaviour of Joints*, Proc. The 1st Intl. Workshop on scale effects in Rock masses, Edited by Cunha, P.A. Luen, Norway 131-148.
- 40. Nakamura, S.T. (1949): *On Visco-Elastic Medium*. Sci. Rep. Tokyo Univ., 5th Series Geophysics, Vol. 1. No. 2, pp. 91-95.
- 41. Newland, P.L. and Alley, B.H. (1957): *Volume Changes in Drained Triaxial Tests on Granular Material.*, Geotechnique, Vol. 7, pp. 17 34.
- 42. Novello, E.A. (1988): *Geomechanics and The Critical State*, Ph.D. Thesis, Monash University, Melbourne.
- 43. Pankhrust, R.C. (1964): *Dimensional Analysis and Scale Factor*, Chapman & Hall Ltd. London.
- 44. Patton, F.D. (1966): *Multiple Modes of Shear failure in Rock,* In. Proc. 1st International Congress on Rock Mechanics (Lisbon), Vol. 1, pp. 509 513.
- Pratt, H.R., Black, A.D. and Brace, W,F. (1972): *Friction and Deformation of Jointed Quartz Diorite*, Proc. 3rd Cong. of Int. Soc. Rock Mech., Denver Colorado, Vol. II. A: 306-310.
- 46. Rai, M.A., Kramadibrata, S. dan Wattimena, R.K. (2011): *Mekanika Batuan*, Penerbit ITB.
- 47. Saptono, S. (2011): *Penentuan kekuatan geser jangka panjang batupasir dengan pendekatan perilaku rayapan geser visko-elastik*. Seminar Kebumian Nasional, FTM UPN "Veteran" Yogyakarta. Yogyakarta.
- 48. Saptono, S., Kramadibrata, S. and Sulistianto, B. (2010): The Use of Rock Mass Characteristic for Assessing Slope Stability, The 5th AUTOLE International Postgraduate Students Conference on Engineering, ITB, Bandung, Indonesia.
- 49. Saptono, S., Kramadibrata, S., Sulistianto, B. dan Wattimena, K.R., (2008b): Peranan Klasifikasi Massa Batuan Pada Perancangan Lereng Tambang Terbuka Penambangan Batubara, PT. Adaro Indonesia, Proceeding TPT XVII – Perhapi. Juli 2008, Palembang.
- 50. Saptono, S., Kramadibrata, S., Sulistianto, B. dan Wattimena, R.K. (2008c): Perkiraan Potensi Kelongsoran Lereng Lowwall Penambangan Batubara Berdasarkan Hasil Pemantauan Inclinometer, PT. Adaro Indonesia, Kursus dan Seminar Geoteknik, Nopember 2008, Diesemas ke 50 ITB.
- 51. Saptono, S., Kramadibrata, S., Sulistianto, B. dan Wattimena, R.K. (2009): *Pengaruh Ukuran Contoh Terhadap Kekuatan Batuan*, Journal Teknologi Mineral, ITB.
- 52. Saptono, S., Kramadibrata, S., Sulistianto, B., Wattimena, K.R., Nugroho, P., Iskandar, E. and Bahri, S., (2008a): Low Wall Slope Monitoring By Robotic Theodolite System Likely to Contribute to Increased Production of Coal in PT.

Adaro Indonesia, Proceeding 1st Southern Hemisphere International Rock Mechanics Symposium, Vol. 1, Potvin et al. eds. Perth. Australia.

- 53. Singh, M.M. (1981): Strength of rock. Physical properties of rock and materials, New York.
- 54. Singh, R.N., Hassani, F.P. and Elkington, P.A.S. (1983): *The Application of Strength and Deformation Index Testing to The Stabality Assessment of Coal Measures Excavation,.* Proceedings 24th US Symposium on Rock Mechanics, Texas A&M University, 599-609.
- 55. Sulistianto, B., Kramadibrata, S., Saptono, S., Wattimena, R.K. and Nugroho, P. (2009): *Deformation Monitoring at Low-wall slope of coal open pit in PT. Adaro Indonesia*, Earth resource science and technology, 2nd International Symposium of Novel Carbon Resources Science, March, ITB.
- 56. Taylor, D.W. (1937): *Stability or Earth Slopes*, Journal of the Boston Society of Civil Engineer, 24: 197 256.
- 57. Terzaghi, K. (1946): *Rock Defects and Loads on Tunnel Support,* Rock Tunneling with Steel Support, Commercial Shearing Co., Youngstown, OH., pp. 15 99.
- 58. Terzaghi, R.D. (1965): Sources of Error in Joint Surveys, Geotechnique, Vol. XV. Pp. 287 304.
- 59. Unal, E. (1996): *Modified Rock Mass Classification: M-RMR System*, Milestone in Rock Engineering, Balkema. Pp. 203 223.
- 60. Vutukuri, V.S. Lama, R.D. and Saluja, S.S. (1974): *Handbook on mechanical properties of rocks*, Vol., Trans Tech. Publ.
- 61. Wattimena, R.K., Kramadibrata,, S., Sulistianto, B. dan Saptono, S. (2009): *Pengujian Geser Langsung Skala Besar*, Riset KK ITB, ITB, Bandung.
- 62. Whittaker, B.N. and Reddish, D.J. (1989): *Subsidence Occurrence Prediction and Control. Developments in Geotechnical Engineering*, 56. Elsevier, pp. 437-473.
- 63. Yang, S.Q. and Cheng, L. (2011): *Non-Stationary and Nonlinier Visco-Elastic Shear Creep Model for Shale,* International Journal Rock Mechanics & Mining Sciences, Elsevier.
- 64. Yoshinaka, R., Yoshida, J., Arai, H. and Arisaka, S. (1993): *Scale Effects on Shear Strength The Deformability of Rock Joint*, The 2nd Intl. Workshop on scale effects in Rock masses, Edited by Cunha, P.A. Lisbon, Portugal, 143-149.