Peningkatan Pertumbuhan dan Hasil Sawi Hijau (Brassica chinensis) oleh Bakteri Fotosintetik dalam Kondisi Lapangan

Yovi Avianto

Abstract


In the 21st century, there has been a gradual shift in agricultural practices towards embracing organic concepts and harnessing the potential of beneficial bacteria to amplify crop production. Simultaneously, there is a heightened public awareness concerning the significance of integrating leafy vegetables into diets. A promising avenue to address these evolving concerns involves the adoption of photosynthetic bacteria as biofertilizers. This study sought to examine the extent to which pak choy plant yield is enhanced through the supplementation of photosynthetic bacteria (PSB). Furthermore, the investigation aimed to elucidate the underlying mechanisms by which photosynthetic bacteria contribute to the growth of mustard green plants and determine the optimal PSB dosage to achieve maximal production. Conducted between November and December 2022 at the Biotech Botanical Garden, the research employed a complete randomized block design incorporating various PSB treatment levels, including no PSB spray, a 10 mL/L dosage, a 50 mL/L dosage, and a 100 mL/L dosage. An array of growth indicators such as plant height, leaf count, leaf width, root length, fresh and dry shoot weight, fresh and dry root weight, relative water content, and consumption index, were meticulously observed. The study revealed noteworthy alterations in improved growth and yield (consumption index). The optimal PSB dosage, identified to maximize pak choy plant production, was determined to be 67.25 mL/L.


Keywords


aminolevulinic acid, biofertilizers, consumption index, leafy vegetables, NUE

Full Text:

PDF

References


Ainsworth, E. A., & Bush, D. R. (2011). Carbohydrate export from the leaf: A highly regulated process and target to enhance photosynthesis and productivity. Plant Physiology, 155(1), 64–69. https://doi.org/10.1104/pp.110.167684

Andreolli, M., Zapparoli, G., Angelini, E., Lucchetta, G., Lampis, S., & Vallini, G. (2019). Pseudomonas protegens MP12: A plant growth-promoting endophytic bacterium with broad-spectrum antifungal activity against grapevine phytopathogens. Microbiological Research, 219, 123–131. https://doi.org/10.1016/j.micres.2018.11.003

Chamizo-Ampudia, A., Sanz-Luque, E., Llamas, A., Galvan, A., & Fernandez, E. (2017). Nitrate reductase regulates plant nitric oxide homeostasis. Trends in Plant Science, 22(2), 163–174. https://doi.org/10.1016/j.tplants.2016.12.001

De Oliveira Siqueira Lino, J., Delmondes Mudo, L. E., Texeira Lobo, J., Lucena Cavalcante, Í. H., De Luna Souto, A. G., Guimarães Sanches, L., & Borges De Paiva Neto, V. (2023). Application of Rhodopseudomonas palustris Moderates Some of the Crop Physiological Parameters in Mango Cultivar ‘Keitt.’ Erwerbs-Obstbau, 65(5), 1633–1645. https://doi.org/10.1007/s10341-023-00863-2

Du, B., Shukla, M. K., Ding, R., Yang, X., & Du, T. (2022). Biofertilization with photosynthetic bacteria as a new strategy for mitigating photosynthetic acclimation to elevated CO2 on cherry tomato. Environmental and Experimental Botany, 194, 104758. https://doi.org/10.1016/j.envexpbot.2021.104758

FAO. (2022). The future of food and agriculture – Drivers and triggers for transformation. FAO. https://doi.org/10.4060/cc0959en

Faria, D. R., Sakita, K. M., Capoci, I. R. G., Arita, G. S., Rodrigues-Vendramini, F. A. V., De Oliveira Junior, A. G., Soares Felipe, M. S., Bonfim De Mendonça, P. D. S., Svidzinski, T. I. E., & Kioshima, E. S. (2020). Promising antifungal activity of new oxadiazole against Candida krusei. PLOS ONE, 15(1), e0227876. https://doi.org/10.1371/journal.pone.0227876

Feng, K., Cai, Z., Ding, T., Yan, H., Liu, X., & Zhang, Z. (2019). Effects of potassium‐solubulizing and photosynthetic bacteria on tolerance to salt stress in maize. Journal of Applied Microbiology, 126(5), 1530–1540. https://doi.org/10.1111/jam.14220

Ge, H., Liu, Z., & Zhang, F. (2017). Effect of Rhodopseudomonas palustris G5 on seedling growth and some physiological and biochemical characteristics of cucumber under cadmium stress. Emirates Journal of Food and Agriculture, 816. https://doi.org/10.9755/ejfa.2017.v29.i11.1327

Ge, H., & Zhang, F. (2019). Growth-Promoting Ability of Rhodopseudomonas palustris G5 and Its Effect on Induced Resistance in Cucumber Against Salt Stress. Journal of Plant Growth Regulation, 38(1), 180–188. https://doi.org/10.1007/s00344-018-9825-8

George, D. M., Vincent, A. S., & Mackey, H. R. (2020). An overview of anoxygenic phototrophic bacteria and their applications in environmental biotechnology for sustainable Resource recovery. Biotechnology Reports, 28, e00563. https://doi.org/10.1016/j.btre.2020.e00563

Gil, M. I. (2016). Preharvest factors and fresh-cut quality of leafy vegetables. Acta Horticulturae, 1141, 57–64. https://doi.org/10.17660/ActaHortic.2016.1141.6

Hsu, S. H., Lo, K. J., Fang, W., Lur, H.-S., & Liu, C.-T. (2015). Application of phototrophic bacterial inoculant to reduce nitrate content in hydroponic leafy vegetables. Crop, Environment & Bioinformatics, 12(1), 30–41.

Hsu, S.-H., Shen, M.-W., Chen, J.-C., Lur, H.-S., & Liu, C.-T. (2021). The photosynthetic bacterium Rhodopseudomonas palustris strain PS3 exerts plant growth-promoting effects by stimulating nitrogen uptake and elevating auxin levels in expanding leaves. Frontiers in Plant Science, 12, 573634. https://doi.org/10.3389/fpls.2021.573634

Kang, S.-M., Adhikari, A., Khan, M. A., Kwon, E.-H., Park, Y.-S., & Lee, I.-J. (2021). Influence of the Rhizobacterium Rhodobacter sphaeroides KE149 and Biochar on Waterlogging Stress Tolerance in Glycine max L. Environments, 8(9), 94. https://doi.org/10.3390/environments8090094

Kantachote, D., Nunkaew, T., Kantha, T., & Chaiprapat, S. (2016). Biofertilizers from Rhodopseudomonas palustris strains to enhance rice yields and reduce methane emissions. Applied Soil Ecology, 100, 154–161. https://doi.org/10.1016/j.apsoil.2015.12.015

Kantha, T., Kantachote, D., & Klongdee, N. (2015). Potential of biofertilizers from selected Rhodopseudomonas palustris strains to assist rice (Oryza sativa L. subsp. Indica) growth under salt stress and to reduce greenhouse gas emissions. Annals of Microbiology, 65(4), 2109–2118. https://doi.org/10.1007/s13213-015-1049-6

Khuong, N. Q., Kantachote, D., Onthong, J., Xuan, L. N. T., & Sukhoom, A. (2018). Enhancement of rice growth and yield in actual acid sulfate soils by potent acid-resistant Rhodopseudomonas palustris strains for producing safe rice. Plant and Soil, 429(1–2), 483–501. https://doi.org/10.1007/s11104-018-3705-7

Khuong, N. Q., Thuc, L. V., Giang, C. T., Xuan, L. N. T., Thu, L. T. M., Isao, A., & Jun-Ichi, S. (2023). Improvement of Nutrient Uptake, Yield of Black Sesame (Sesamum indicum L.), and Alluvial Soil Fertility in Dyke by Spent Rice Straw from Mushroom Cultivation as Biofertilizer Containing Potent Strains of Rhodopseudomonas palustris. The Scientific World Journal, 2023, 1–14. https://doi.org/10.1155/2023/1954632

Kondo, K., Nakata, N., & Nishihara, E. (2004). Effect of Purple Nonsulfur Bacteria (Rhodobacter sphaeroides) on the Growth and Quality of Komatsuna under Different Light Qualities. Environment Control in Biology, 42(3), 247–253. https://doi.org/10.2525/ecb1963.42.247

Kondo, K., Nakata, N., & Nishihara, E. (2008). Effect of purple non-sulfur bacterium (Rhodobacter sphaeroides) application on the growth and quality of spinach and komatsuna. J. Jpn. Soc. Agric. Technol. Manag., 14, 198–203.

Lavres Junior, J., Santos Junior, J. D. D. G. D., & Monteiro, F. A. (2010). Nitrate reductase activity and spad readings in leaf tissues of guinea grass submitted to nitrogen and potassium rates. Revista Brasileira de Ciência Do Solo, 34(3), 801–809. https://doi.org/10.1590/S0100-06832010000300022

Lawlor, D. W., & Paul, M. J. (2014). Source/sink interactions underpin crop yield: The case for trehalose 6-phosphate/SnRK1 in improvement of wheat. Frontiers in Plant Science, 5. https://doi.org/10.3389/fpls.2014.00418

Lee, S.-K., Lur, H.-S., & Liu, C.-T. (2021). From Lab to Farm: Elucidating the Beneficial Roles of Photosynthetic Bacteria in Sustainable Agriculture. Microorganisms, 9(12), 2453. https://doi.org/10.3390/microorganisms9122453

Nawaz, M. A., Wang, L., Jiao, Y., Chen, C., Zhao, L., Mei, M., Yu, Y., Bie, Z., & Huang, Y. (2017). Pumpkin rootstock improves nitrogen use efficiency of watermelon scion by enhancing nutrient uptake, cytokinin content, and expression of nitrate reductase genes. Plant Growth Regulation, 82(2), 233–246. https://doi.org/10.1007/s10725-017-0254-7

Prior, R. L., & Cao, G. (2000). Antioxidant Phytochemicals in Fruits and Vegetables: Diet and Health Implications. HortScience, 35(4), 588–592. https://doi.org/10.21273/HORTSCI.35.4.588

Ramya, V., & Patel, P. (2019). Health benefits of vegetables. International Journal of Chemical Studies, 7(2), 82–87.

Smart, R. E., & Bingham, G. E. (1974). Rapid estimates of relative water content. Plant Physiology, 53(2), 258–260. https://doi.org/10.1104/pp.53.2.258

Sundar, L. S., Chang, Y.-T., & Chao, Y.-Y. (2023). Unveiling the novel effect of Rhodopseudomonas palustris-derived extracellular 5-aminolevulinic acid on the growth and yield of Chenopodium formosanum Koidz under field conditions [Preprint]. In Review. https://doi.org/10.21203/rs.3.rs-2826581/v1

Takeuchi, M. H., & Numata, K. (2019). Marine Purple Photosynthetic Bacteria as Sustainable Microbial Production Hosts. Frontiers in Bioengineering and Biotechnology, 7, 258. https://doi.org/10.3389/fbioe.2019.00258

Talaat, N. B. (2019). Effective microorganisms: An innovative tool for inducing common bean (Phaseolus vulgaris L.) salt-tolerance by regulating photosynthetic rate and endogenous phytohormones production. Scientia Horticulturae, 250, 254–265. https://doi.org/10.1016/j.scienta.2019.02.052

Wang, Y., Peng, S., Hua, Q., Qiu, C., Wu, P., Liu, X., & Lin, X. (2021). The Long-Term Effects of Using Phosphate-Solubilizing Bacteria and Photosynthetic Bacteria as Biofertilizers on Peanut Yield and Soil Bacteria Community. Frontiers in Microbiology, 12, 693535. https://doi.org/10.3389/fmicb.2021.693535

Wong, W.-T., Tseng, C.-H., Hsu, S.-H., Lur, H.-S., Mo, C.-W., Huang, C.-N., Hsu, S.-C., Lee, K.-T., & Liu, C.-T. (2014). Promoting Effects of a Single Rhodopseudomonas palustris Inoculant on Plant Growth by Brassica rapa chinensis under Low Fertilizer Input. Microbes and Environments, 29(3), 303–313. https://doi.org/10.1264/jsme2.ME14056

Yadav, S. K., Soni, R., & Rajput, A. S. (2018). Role of Microbes in Organic Farming for Sustainable Agro-Ecosystem. In D. G. Panpatte, Y. K. Jhala, H. N. Shelat, & R. V. Vyas (Eds.), Microorganisms for Green Revolution (Vol. 7, pp. 241–252). Springer Singapore. https://doi.org/10.1007/978-981-10-7146-1_12

Yen, K. S., Sundar, L. S., & Chao, Y.-Y. (2022). Foliar Application of Rhodopseudomonas palustris Enhances the Rice Crop Growth and Yield under Field Conditions. Plants, 11(19), 2452. https://doi.org/10.3390/plants11192452


Refbacks

  • There are currently no refbacks.



Creative Commons License
Techno LPPM by http://jurnal.upnyk.ac.id/index.php/teknoslppm is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats