Design and manufacturing optimization of herbal drink crystallization machine using reverse engineering method

Heru Agus Santoso, Nur Islahudin, Dewa Kusuma Wijaya

Abstract


This article explains the design and manufacture of a herbal drink powder crystallization machine at Menik Jaya MSMEs. The problem with this research stems from the large number of defective products produced in the form of herbal powder that is burnt and lumpy. This is because production staff still manually stir the process continuously without stopping, causing fatigue due to work and impacting the quality of the process. So that the optimal design and manufacture of the crystallization machine is obtained where the dimensions of the machine are 130 cm high, 100 cm long and wide, machine legs height is 62 cm, stove height is 87 cm from the base and the stove pan handle width is 12 cm. Regarding engine performance, the ideal electric capacity of the motor is 60 watts with a stirrer and pan made from a combination of wood and AISI 3195 stainless steel. The pully uses 2 types of sizes, if the volume of raw material is small then a 4 cm pully is used with 10 Rpm rotation speed and 0,052 Nm torque value, while for large volumes a 6 cm pully is used with 15 Rpm rotation speed and 0,038 Nm torque value.

Keywords


reverse engineering; crystallization machine; design and manufacturing; optimization; herbal powder

Full Text:

PDF

References


E. Pujiastuti, D. A. Palupi, S. Primadevi, D. Erliani, M. Sari, and L. Sugiarti, “Apoteker Kecil dan Budaya Minum Jamu,” Jurnal Pengabdian Kesehatan, vol. 4, no. 1, pp. 71–77, 2021, doi: https://doi.org/10.31596/jpk.v4i1.108.

E. Trinovit, Fatmaria, and F. D. Alexandra, “Penerapan Teknologi Kristalisasi dalam Pengolahan Produk Pangan Serbuk Herbal Instan di Kelurahan Kereng Bangkirai,” Jurnal Pengabdian Inovasi Lahan Basah Unggul, vol. 1, no. 2, pp. 63–72, 2021, doi: https://doi.org/10.20527/ilung.v1i2.

S. Purwantisari, S. N. Jannah, D. Handayani, M. E. Yulianto, and A. Ardiansari, “Produksi Serbuk Jamu Instan dengan Alat Kristalisasi di UMKM Kecamatan Ungaran Timur Kabupaten Semarang,” Jurnal E-DIMAS, vol. 12, no. 3, pp. 527–532, 2021, doi: https://doi.org/10.26877/e-dimas.v12i3.7070.

M. G. Miranti et al., “Formulasi dan Uji Hedonik Minuman Herbal Serbuk Untuk Menjaga Imunitas Keluarga dalam Masa Pandemik Covid-19,” Jurnal KELUARGA, vol. 7, no. 1, pp. 15–27, 2021, doi: https://doi.org/10.30738/keluarga.v7i1.8811.

M. Yusuf, F. Yudhanto, and D. P. Purbajati, “Desain, Manufaktur dan Uji Kinerja Mesin Pengolah Serbuk Jahe Merah,” Quantum Teknika : Jurnal Teknik Mesin Terapan, vol. 2, no. 2, pp. 87–92, Apr. 2021, doi: 10.18196/jqt.v2i2.11573.

Pramono et al., “Penerapan Mesin Kristalisasi Serbuk Minuman Herbal Instan untuk Menjaga Kualitas Cita Rasa & Sterilisasi Bahan Minuman UMKM Melati Losari,” Jurnal Karinov, vol. 5, no. 2, pp. 80–84, 2022, doi: 10.17977/um045v5i1p80.

F. A. P. Putra, Y. S. Pramesti, and M. M. Ilham, “Rancang Bangun Pemanas pada Mesin Produksi Jahe Kristal Semi Otomatis Kapasitas 5 Kg,” in Seminar Nasional Inovasi Teknologi, 2022, pp. 113–119.

Y. S. Pramesti, I. Setyowidodo, F. Rhohman, M. M. Ilham, and T. P. Arlana, “Analisis Gaya dan Daya pada Alat Pengaduk Mesin Kristalisasi Jahe dengan Kapasitas5 Kg/Jam,” Jurnal Mesin Nusantara, vol. 6, no. 1, pp. 98–106, Jul. 2023, doi: 10.29407/jmn.v6i1.19929.

L. Deladino, A. S. Navarro, and M. N. Martino, “Microstructure of minerals and yerba mate extract co-crystallized with sucrose,” J Food Eng, vol. 96, no. 3, pp. 410–415, Feb. 2010, doi: 10.1016/j.jfoodeng.2009.08.015.

N. Harnkarnsujarit and S. Charoenrein, “Effect of water activity on sugar crystallization and β-carotene stability of freeze-dried mango powder,” J Food Eng, vol. 105, no. 4, pp. 592–598, Aug. 2011, doi: 10.1016/j.jfoodeng.2011.03.026.

A. López-Córdoba, L. Deladino, L. Agudelo-Mesa, and M. Martino, “Yerba mate antioxidant powders obtained by co-crystallization: Stability during storage,” J Food Eng, vol. 124, pp. 158–165, 2014, doi: 10.1016/j.jfoodeng.2013.10.010.

G. Sun et al., “‘Two-dimensional’ molecularly imprinted solid-phase extraction coupled with crystallization and high performance liquid chromatography for fast semi-preparative purification of tannins from pomegranate husk extract,” J Chromatogr A, vol. 1505, pp. 35–42, Jul. 2017, doi: 10.1016/j.chroma.2017.05.033.

C. D. Doan, I. Tavernier, P. K. Okuro, and K. Dewettinck, “Internal and external factors affecting the crystallization, gelation and applicability of wax-based oleogels in food industry,” Innovative Food Science and Emerging Technologies, vol. 45. Elsevier Ltd, pp. 42–52, Feb. 01, 2018. doi: 10.1016/j.ifset.2017.09.023.

A. V. Karangutkar and L. Ananthanarayan, “Co-crystallization of Basella rubra extract with sucrose: Characterization of co-crystals and evaluating the storage stability of betacyanin pigments,” J Food Eng, vol. 271, Apr. 2020, doi: 10.1016/j.jfoodeng.2019.109776.

S. S. Hubbes, A. Braun, and P. Foerst, “Sugar particles and their role in crystallization kinetics and structural properties in fats used for nougat creme production,” J Food Eng, vol. 287, Dec. 2020, doi: 10.1016/j.jfoodeng.2020.110130.

T. Truong, D. Dahal, P. Urrutia, L. Alvarez, S. Almonacid, and B. Bhandari, “Crystallisation and glass transition behaviour of Chilean raisins in relation to their sugar compositions,” Food Chem, vol. 311, May 2020, doi: 10.1016/j.foodchem.2019.125929.

Y. Irigoiti, D. K. Yamul, and A. S. Navarro, “Co-crystallized sucrose with propolis extract as a food ingredient: Powder characterization and antioxidant stability,” LWT, vol. 143, May 2021, doi: 10.1016/j.lwt.2021.111164.

N. Pawar, S. Moharkar, S. G. Agrawal, P. B. Dhamole, and R. N. Methekar, “Crystallization of erythromycin extracted using novel phase separation ‘sugaring-out extraction’: A combined modelling and experimental approach,” Chemical Engineering and Processing - Process Intensification, vol. 169, Dec. 2021, doi: 10.1016/j.cep.2021.108616.

S. Simoes, E. Lelaj, and D. Rousseau, “The presence of crystalline sugar limits the influence of emulsifiers on cocoa butter crystallization,” Food Chem, vol. 346, Jun. 2021, doi: 10.1016/j.foodchem.2020.128848.

H. Hou et al., “Glass transition and crystallization of solid model system of jujube slice as influenced by sugars and organic acids,” Food Chem, vol. 359, Oct. 2021, doi: 10.1016/j.foodchem.2021.129935.

E. Chezanoglou and A. M. Goula, “Co-crystallization in sucrose: A promising method for encapsulation of food bioactive components,” Trends in Food Science and Technology, vol. 114. Elsevier Ltd, pp. 262–274, Aug. 01, 2021. doi: 10.1016/j.tifs.2021.05.036.

A. Behnamnik, M. Vazifedoost, Z. Didar, and B. Hajirostamloo, “Evaluation of physicochemical, structural, and antioxidant properties of microencapsulated seed extract from Securigera securidaca by co-crystallization method during storage time,” Biocatal Agric Biotechnol, vol. 35, Aug. 2021, doi: 10.1016/j.bcab.2021.102090.

V. E. Luján-Torres et al., “Co-crystallization of lactose-flavonoids using Panela cheese whey,” J Food Eng, vol. 357, Nov. 2023, doi: 10.1016/j.jfoodeng.2023.111598.

S. Jia et al., “Separation performance and agglomeration behavior analysis of solution crystallization in food engineering,” Food Chem, vol. 419, Sep. 2023, doi: 10.1016/j.foodchem.2023.136051.

D. Raj CT, V. Palaninathan, and R. A. James, “Anti-uropathogenic, antioxidant and struvite crystallization inhibitory potential of fresh and fermented coconut water,” Biocatal Agric Biotechnol, vol. 47, Jan. 2023, doi: 10.1016/j.bcab.2022.102555.

E. Chezanoglou, N. Kenanidou, C. Spyropoulos, D. Xenitopoulou, E. Zlati, and A. M. Goula, “Encapsulation of pomegranate peel extract in sucrose matrix by co-crystallization,” Sustain Chem Pharm, vol. 31, Apr. 2023, doi: 10.1016/j.scp.2022.100949.

W. Ke et al., “Physical, textural and crystallization properties of ground nut oil-based diacylglycerols in W/O margarine system,” Food Chem, vol. 433, Feb. 2024, doi: 10.1016/j.foodchem.2023.137374.

A. P. Valerga, M. Batista, R. Bienvenido, S. R. Fernández-Vidal, C. Wendt, and M. Marcos, “Reverse Engineering Based Methodology for Modelling Cutting Tools,” in Procedia Engineering, Elsevier Ltd, 2015, pp. 1144–1151. doi: 10.1016/j.proeng.2015.12.607.

B. Engel and S. S. H. Al-Maeeni, “An integrated reverse engineering and failure analysis approach for recovery of mechanical shafts,” in Procedia CIRP, Elsevier B.V., 2019, pp. 1083–1088. doi: 10.1016/j.procir.2019.03.257.

K. Yanamandra, G. L. Chen, X. Xu, G. Mac, and N. Gupta, “Reverse engineering of additive manufactured composite part by toolpath reconstruction using imaging and machine learning,” Compos Sci Technol, vol. 198, Sep. 2020, doi: 10.1016/j.compscitech.2020.108318.

J. Che et al., “A novel method for analyzing working performance of milling tools based on reverse engineering,” J Pet Sci Eng, vol. 197, Feb. 2021, doi: 10.1016/j.petrol.2020.107987.

I. Gonzalez-Perez and A. Fuentes-Aznar, “Reverse engineering of spiral bevel gear drives reconstructed from point clouds,” Mech Mach Theory, vol. 170, Apr. 2022, doi: 10.1016/j.mechmachtheory.2021.104694.

H. de Freitas Miranda, A. N. Rodrigues da Silva, and K. Geurs, “Reverse engineering cycling culture using stakeholders’ perceptions of well-established examples – Insights from Enschede and Münster,” Case Stud Transp Policy, vol. 14, Dec. 2023, doi: 10.1016/j.cstp.2023.101107.

M. Rozesara, S. Ghazinoori, M. Manteghi, and S. H. Tabatabaeian, “A reverse engineering-based model for innovation process in complex product systems: Multiple case studies in the aviation industry,” Journal of Engineering and Technology Management - JET-M, vol. 69, Jul. 2023, doi: 10.1016/j.jengtecman.2023.101765.

X. Liu, J. Gu, and L. Zhao, “Promoting primary school students’ creativity via reverse engineering pedagogy in robotics education,” Think Skills Creat, vol. 49, Sep. 2023, doi: 10.1016/j.tsc.2023.101339.

B. Shirt-Ediss et al., “Reverse engineering DNA origami nanostructure designs from raw scaffold and staple sequence lists,” Comput Struct Biotechnol J, vol. 21, pp. 3615–3626, Jan. 2023, doi: 10.1016/j.csbj.2023.07.011.

A. C. Kyaw, N. Nagengast, C. Usma-Mansfield, and F. K. Fuss, “A Combined Reverse Engineering and Multi-Criteria Decision-Making Approach for Remanufacturing a Classic Car Part,” in Procedia CIRP, Elsevier B.V., 2023, pp. 222–228. doi: 10.1016/j.procir.2023.02.133.

A. X. Amal Rebin, A. Amal Krishna, A. Sharavana Kumar, and R. Christu Paul, “Design development and analysis of pylon prosthesis through reverse engineering,” in Materials Today: Proceedings, Elsevier Ltd, 2023, pp. 150–155. doi: 10.1016/j.matpr.2023.05.249.

Y. H. Lee et al., “Byproduct reverse engineering to construct unusually enhanced protection layers for dendrite-free Zn anode,” Chemical Engineering Journal, vol. 464, May 2023, doi: 10.1016/j.cej.2023.142580.

I. Rhoden, C. S. Ball, M. Grajewski, S. Vögele, and W. Kuckshinrichs, “Reverse engineering of stakeholder preferences – A multi-criteria assessment of the German passenger car sector,” Renewable and Sustainable Energy Reviews, vol. 181, Jul. 2023, doi: 10.1016/j.rser.2023.113352.




DOI: https://doi.org/10.31315/opsi.v16i2.11335

Refbacks

  • There are currently no refbacks.




Sekretariat :
Jurusan Teknik Industri
FTI UPN "Veteran" Yogyakarta
d.a Jalan Babarsari 2 Tambakbayan Yogyakarta 55281
Telp. (0274) 486256
Website http://jurnal.upnyk.ac.id/index.php/opsi
email : jurnal.opsi@upnyk.ac.id

 

indexed by:

 
 
 


Lisensi Creative Commons
This work is Licensed Under a Creative Commons Attribution 4.0 International license.

View My Stats