Enhancing logistics efficiency: A case study of genetic algorithm-based route optimization in distribution problem

Hayati Mukti Asih, Salsabila Aulya Rahman, Karisa Usandi, Qaedi Alwafi E. Saputra, Aziza Della Marza

Abstract


The optimization of route planning is a critical consideration frequently happened in the logistics of product distribution. This study addresses distribution issues, such as long trip distances, which result in high distribution costs. The objective of this research is to increase distribution routes' effectiveness, which will enable it to reach the minimize distance and lower the cost of product distribution. The Travelling Salesman Problem (TSP) can be resolved by using the Genetic Algorithm (GA) technique to optimize the path. Variations in crossover, mutation, and population were made when experimenting with GA.  The results of the study indicate that the overall distance travelled decreased from 55.5 km to 30.45 km and that the cost of distributing the product was reduced from Rp 94,350.00 to Rp 51,765.00. There is a about 45% improvement. There is about 45% improvement. This optimisation technique has a favourable effect on the overall financial performance and competitiveness of businesses involved in comparable distribution operations, as well as improving operational efficiency and offering the possibility of cost savings.


Keywords


Travelling Salesman Problem; Genetic Algorithm; Distribution

Full Text:

PDF

References


T. T. Suhariyanto, R. A. C. Leuveano, and S. Suhariyanto, ‘Analisis Manajemen Organisasi dan Sumber Daya Manusia (Studi Kasus pada Industri Velg Mobil)’, J. Optimasi Sist. Ind., vol. 13, no. 1, pp. 25–40, 2020. http://dx.doi.org/10.31315/opsi.v13i1.3470

A. Rahman and H. M. Asih, ‘Optimizing shipping routes to minimize cost using particle swarm optimization’, Int. J. Ind. Optim., vol. 1, no. 1, p. 53, 2020. https://doi.org/10.1007/s42452-020-0277-8

H. M. Asih, R. A. C. Leuveano, A. Rahman, and M. Faishal, ‘Traveling Salesman Problem With Prioritization for Perishable Products in Yogyakarta, Indonesia’, J. Adv. Manuf. Technol., vol. 16, no. 3, pp. 15–27, 2022. https://doi.org/10.1007/s40436-022-00567-w

B. M. Rao, P. Xanthopoulos, and Q. P. Zheng, ‘DeLand Crayon Company: An application of the traveling salesman problem to production scheduling with sequence-dependent setup times’, INFORMS Trans. Educ., vol. 20, no. 2, pp. 93–98, 2020. https://doi.org/10.1287/ited.2019.0191

B. B. Keskin, ̄brahim Çapar, C. R. Sox, and N. K. Freeman, ‘An integrated load-planning algorithm for outbound logistics at webb wheel’, Interfaces (Providence)., vol. 44, no. 5, pp. 480–497, 2014. https://doi.org/10.1287/inte.2014.0774

Y. Shuai, S. Yunfeng, and Z. Kai, ‘An effective method for solving multiple traveling salesman problem based on NSGA-II’, Syst. Sci. Control Eng., vol. 7, no. 2, pp. 121–129, 2019. https://doi.org/10.1109/SSCE.2019.00025

K. J. Kostuk and K. A. Willoughby, ‘A Decision Support System for Scheduling the Canadian Football League’, Interfaces (Providence)., vol. 42, no. 3, pp. 286–295, 2012. https://doi.org/10.1287/inte.1120.0648

C. Dorhege, A. Kleiner, A. Hertle, and A. Kolling, ‘Multirobot Coverage Search in Three Dimensions’, J. F. Robot., vol. 33, no. 4, pp. 537–558, 2016. https://doi.org/10.1002/rob.21673

Aswandi, S. Cokrowibowo, and A. Irianti, ‘Model Penentuan Rute Terpendek Penjemputan Sampah Menggunakan Metode MTSP dan Algoritma Genetika’, J. Appl. Comput. Sci. Technol., vol. 2, no. 1, pp. 43–48, 2021. https://doi.org/10.33096/jacst.2021.2.1.43-48

A. P. Hidayat, L. R. Charky, and S. H. Santosa, ‘Analysis of Fish Delivery in Pandeglang Banten: a Case Study of Labuan Fish Auctions’, Journal of Industrial Engineering Management, vol. 7, no. 3. pp. 209–214, 2022. https://doi.org/10.15208/jiem.2022.209

A. A.P., O. K., and E. T.O., ‘A Comparative Study of Simulated Annealing and Genetic Algorithm for Solving the Traveling Salesman Problem’, Int. J. Appl. Inf. Syst., vol. 4, no. 4, pp. 6–12, 2012. https://doi.org/10.5120/ijais12-541959

A. Riazi, ‘Genetic algorithm and a double-chromosome implementation to the traveling salesman problem’, SN Appl. Sci., vol. 1, no. 11, 2019. https://doi.org/10.1007/s42452-019-1503-9

M. Albayrak and N. Allahverdi, ‘Development a new mutation operator to solve the traveling salesman problem by aid of genetic algorithms’, Expert Syst. Appl., vol. 38, no. 3, pp. 1313–1320, 2011. https://doi.org/10.1016/j.eswa.2010.07.082

P. Balaprakash, M. Birattari, T. Stützle, Z. Yuan, and M. Dorigo, ‘Estimation-based ant colony optimization and local search for the probabilistic traveling salesman problem’, Swarm Intell., vol. 3, no. 3, pp. 223–242, 2009. https://doi.org/10.1007/s11721-009-0019-9

L. Buriol, P. M. França, and P. Moscato, ‘A new memetic algorithm for the asymmetric traveling salesman problem’, J. Heuristics, vol. 10, no. 5, pp. 483–506, 2004. https://doi.org/10.1023/B:HEUR.0000042156.11618.2b

R. H. Warren, ‘Solving the Traveling Salesman Problem on the D-Wave Quantum Computer’, Front. Phys., vol. 2, no. 75, 2021. https://doi.org/10.3389/fphy.2021.716269

C. Rego, D. Gamboa, F. Glover, and C. Osterman, ‘Traveling salesman problem heuristics: Leading methods, implementations and latest advances’, Eur. J. Oper. Res., vol. 211, no. 3, pp. 427–441, 2011. https://doi.org/10.1016/j.ejor.2010.11.007

S. Gao, Z. Zhang, and C. Cao, ‘A Novel Ant Colony Genetic Hybrid Algorithm’, J. Softw., vol. 5, no. 11, pp. 1179–1186, 2010. https://doi.org/10.4304/jsw.5.11.1179-1186

M. Yousefikhoshbakht, N. Malekzadeh, and M. Sedighpour, ‘Solving the Traveling Salesman Problem Based on The Genetic Reactive Bone Route Algorithm whit Ant Colony System’, Int. J. Prod. Manag. Eng., vol. 4, no. 2, p. 65, 2016. https://doi.org/10.22034/ijpme.2016.41659

C. J. Obi, X. Qiang, and A. M. Yeboah, ‘Using genetic algorithm to solve multiple traveling salesman problem and considering Carbon emissions’, Indian J. Sci. Technol., vol. 13, no. 36, pp. 3707–3715, 2020. https://doi.org/10.17485/ijst/v13i36.9349

N. Boyko and A. Pytel, ‘Aspects of the Study of Genetic Algorithms and Mechanisms for their Optimization for the Traveling Salesman Problem’, Int. J. Comput., vol. 20, no. 4, pp. 543–550, 2021. https://doi.org/10.3991/ijoc.v20i04.15887

V. Jain and J. S. Prasad, ‘Solving Traveling Salesman Problem Using Greedy Genetic Algorithm GGA’, Int. J. Eng. Technol., vol. 9, no. 2, pp. 1148–1154, 2017. https://doi.org/10.21817/ijet/2017/v9i2/170902171

K. E. Chong and H. M. Asih, ‘An Integrated Robust Optimization Model of Capacity Planning under Demand Uncertainty in Electronic Industry’, Int. J. Mech. Mechatronics Eng., vol. 15, no. 03, pp. 88–96, 2015. https://doi.org/10.5281/zenodo.839306

H. M. Asih and K. E. Chong, ‘Throughput and Tester Utilization Improvement in the Hard Disk Drive Assembly Line Using Hybrid Simulation Approach’, Adv. Sci. Lett., vol. 20, no. 2, pp. 455–459, 2014. https://doi.org/10.1166/asl.2014.5477

H. M. Asih and K. E. Chong, ‘An Integrated of Robust Optimization and TOPSIS model for Capacity Planning under Demand Uncertainty’, in 1st International Conference on Industrial Engineering, 2015.

M. N. Khasanah and H. M. Asih, ‘Developing Simulation Optimization Model to Minimize Total Inventory Cost under Uncertain Demand’, in Proceedings of the Second Asia Pacific International Conference on Industrial Engineering and Operations Management, 2021, pp. 1998–2007.

C. Saleh, M. R. A. Purnomo, and H. M. Asih, ‘Optimization of forecasting moving average error in probabilistic demand using genetic algorithm based fuzzy logic’, in Advanced Materials Research, 2012, vol. 576, pp. 710–713. https://doi.org/10.4028/www.scientific.net/AMR.576.710

R. A. C. Leuveano, F. A. Bin Jafar, and M. R. Bin Muhamad, ‘Incorporating transportation costs into integrated inventory model for single supplier and single purchaser’, Adv. Sci. Lett., vol. 20, no. 1, pp. 290–293, 2014. https://doi.org/10.1166/asl.2014.5262

R. A. C. Leuveano, F. A. Bin Jafar, C. Saleh, and M. R. Bin Muhamad, ‘Incorporating Transportation Cost into Joint Economic Lot Size For Single Vendor-Buyer’, J. Softw., vol. 9, no. 5, pp. 1313–1323, 2014. https://doi.org/10.4304/jsw.9.5.1313-1323

M. N. Ab Rahman et al., ‘Incorporating logistic costs into a single vendor–buyer JELS model’, Appl. Math. Model., vol. 40, no. 23–24, pp. 10809–10819, 2016. https://doi.org/10.1016/j.apm.2016.07.021

H. M. Asih, R. A. C. Leuveano, and D. A. Dharmawan, ‘Pembelajaran Algoritma Genetika’, EC00202378235, 2023.

H. M. Asih, R. Achmad, C. Leuveano, and D. A. Dharmawan, ‘Optimizing lot sizing model for perishable bread products using genetic algorithm’, J. Sist. dan Manaj. Ind., vol. 7, no. 2, pp. 139–154, 2023. https://doi.org/10.30656/jsmi.v7i2.7172

A. C. Leuveano, A. Fairul, and M. Razali, ‘Genetic Algorithm Optimization on “ Multi -Vendor Integrated Procurement- Production System under Share Transportation and Just In Time Delivery System ”’, in International Conference on Design and Concurrent Engineering, 2012, no. October, pp. 15–16. https://doi.org/10.1109/URKE.2012.6319589

M. N. A. Rahman, R. A. C. Leuveano, F. A. Bin Jafar, C. Saleh, and B. M. Deros, ‘Total cost reduction using a genetic algorithm for multi-vendor and single manufacturer’, Int. J. Math. Model. Methods Appl. Sci., vol. 9, no. January 2023, pp. 566–575, 2015. https://www.researchgate.net/profile/Raden-Achmad-Chairdino-Leuveano/publication/292355794_Total_cost_reduction_using_a_genetic_algorithm_for_multi-vendor_and_single_manufacturer/links/63c2e3a1d9fb5967c2d70483/Total-cost-reduction-using-a-genetic-algorithm-for-multi-vendor-and-single-manufacturer.pdf




DOI: https://doi.org/10.31315/opsi.v16i2.8962

Refbacks

  • There are currently no refbacks.




Sekretariat :
Jurusan Teknik Industri
FTI UPN "Veteran" Yogyakarta
d.a Jalan Babarsari 2 Tambakbayan Yogyakarta 55281
Telp. (0274) 486256
Website http://jurnal.upnyk.ac.id/index.php/opsi
email : jurnal.opsi@upnyk.ac.id

 

indexed by:

 
 
 


Lisensi Creative Commons
This work is Licensed Under a Creative Commons Attribution 4.0 International license.

View My Stats